
INTEGRATION OVERVIEW
VERSION 3.0.3

(GPUOPEN RELEASE VERSION)

Last revision: 14 December 2023



FSR 3 – INTEGRATION OVERVIEW 2

OVERVIEW



FSR 3 – INTEGRATION OVERVIEW 3

• FidelityFX Super Resolution 3 technology combines resolution upscaling 
with frame generation

WHAT IS AMD FIDELITYFX™ SUPER RESOLUTION 3?

Latency reduction

Keep latency down as
much as possible

Frame pacing for 
regular frame rates 

Variable Refresh Rate 
support

Resolution upscaling

Image quality similar or
better than Native Rendering

Support for any area scale
factor between 1X and 9X
(including DRS)

New FSR 3 “Native AA” 
mode

Ease of integration

Easy transition from 
FSR 2 to FSR 3

Intuitive API

DX12 and UE5 support

Open source

Source code provided 
on GPUOpen under 
an MIT license

Highly optimized

Hand-optimized for
great performance across 
mid to high-range GPUs

Total performance 
increase of up to 4x 
compared to Native 
Rendering!

Frame Generation

Insert interpolated 
frames for smoother 
results

Works in both GPU 
and CPU-limited 
situations



4AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

API INTEGRATION GUIDE



5AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

• FSR 3 includes both upscaling and frame generation
• FSR 2 is therefore superseded by FSR 3
• One needs only integrate FSR 3 to benefit from upscaling and frame generation

• Frame generation in FSR 3 is optional – may be disabled if only upscaling is desired
• This will effectively revert to FSR 2 behavior
• Specify if Frame Generation is not needed on Context Create: this results in memory savings

• FSR 3 API requires an FSR 3 quality mode to be selected for FSR 3 Frame Generation

• Games with existing FSR 2 integrations: replace FSR 2 with FSR 3
• This is the simpler upgrade path

• Games without existing FSR 2 integrations: integrate FSR 3 only (not FSR 2)

FSR 3 INTEGRATION GUIDE - OVERVIEW



6AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

• Ensure that your game has a high-quality FSR 3 upscale-only implementation first!
• Correct use of jittering pattern
• Correct placement of post-process operations
• Correct use of Reactive mask
• Correct use of Transparency & composition mask
• Correct setting of mip-bias for samplers
• See FSR 2 documentation on Github

• A sub-optimal integration of the upscale component will carry over any upscaling 
artefacts to interpolated frames!

REQUISITE FOR SUCCESSFUL FSR 3 INTEGRATION

https://github.com/GPUOpen-Effects/FidelityFX-FSR2/blob/master/README.md


7AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

FSR 3 INTEGRATION STEPS (NATIVE DIRECTX® 12 VERSION)



8AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

FSR 3 DATA FLOW

FSR 3  
Optical Flow

FSR 3 
Frame 

Generation

FSR 3 
Upscale

Game Engine Render

Upscaling

Scene

Post Process

User Interface

Presentation
FSR 3  

Swapchain &
Frame Pacing

UI Composition

Present 
Generated Frame 

Present 
Real Frame 

FSR 3 Interfaces with Upscaling, User Interface 
and Presentation systems of a game engine.

FSR 3 Internal Resource Sharing Path



9AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

• Step 1 - Upscaling
• FSR 3 integration is similar to FSR 2 for upscaling

• If FSR 2 already is supported: Replace FSR 2 upscale with FSR 3 upscale
• Step 2 - Swapchain

• Replace or create your swap chain using FrameInterpolationSwapChain
• Implementing IDXGISwapChain interface
• Handling frame generation, frame pacing and present

• This will internally create 
• CPU threads for frame pacing calculations and real present/UI callbacks
• A GPU queue to handle presents and another for interpolation

• Step 3 – Frame Generation
• FSR 3 frame generation requires some additional input on setup and dispatch, and swapchain handling.

• Start off with Async disabled to validate integration quality.
• Step 4 – UI Handling

• Three different UI composition options: (note: this step is REQUIRED for integration)
• UI texture: UI is stored in another RT on top of generated frames.
• Callback: User calls an FSR 3 function where UI can rendered on top of the generated frame.
• HUDLess: Identify UI by comparing the game frame without UI to the game frame with UI.

FSR 3 NATIVE DX12 INTEGRATION – BASIC STEPS



10AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

• The Optical Flow and Frame Generation workloads can be either run on the Presentation Queue provided 
by the game, or an Async Queue provided by the FrameInterpolationSwapchain.
• To enable Async queue the FSR 3 context must be created with flag 

FFX_FSR3_ENABLE_ASYNC_WORKLOAD_SUPPORT, and ffxConfigureFrameGeneration called with 
allowAsyncWorkloads  = TRUE

• We recommend integrating with Presentation Queue use first, and then testing Async Queue use.
• Async can introduce sync issues with frames that call Upscale, but do not Present(), which means accurate 

tracking and disabling/enabling frame generation is essential. Presentation Queue use can minimise these 
issues.

• If a fence is required to indicate any HUDLess UI resource is consumed, this can be done on the Presentation 
Queue, but not on the Async Queue.

• Async Queue use can increase performance if the workload can be overlapped with early next frame 
rendering.

• Async Queue use will increase memory usage, as some resources need to get double-buffered so Frame 
Generation can execute in parallel to the next frame being rendered

FSR 3 OPTICAL FLOW AND FRAME GENERATION WORKLOADS



11AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

FSR 3 – PRESENT QUEUE UPSCALING AND FRAME GENERATION PIPELINE
Game Render Loop

Main Render WorkloadUIPostFx Main Render Workload UIPostFx UIPostFxOptical 
Flow

Frame 
Generation

Pacing Waits Pacing Waits

Pres
Gene

Present
Generated

Present
Real

FSR 3 Presentation Thread

Present
Real

Present
Real

Present
Generated

Generated Frame Datapath/Presents

Real Frame Datapath/Presents

Upscale

Optical 
Flow

Frame 
Generation

Optical 
Flow

Frame 
Generation

Pacing Waits Pacing Waits Pacing Waits



12AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

FSR 3 – ASYNC UPSCALING AND FRAME GENERATION PIPELINE
Game Render Loop

Main Render WorkloadUIPostFx Main Render Workload UIPostFx UIPostFx Main Render 
Workload

Optical 
Flow

Frame 
Generation Pacing Waits Pacing Waits

Present
Generated

Frame 
Generation

Present
Generated

Present
Real

FSR 3 Async

Present
Real

Present
Real

Present
Generated

Optical 
Flow

Frame 
Generation

Optical 
Flow

Generated Frame Datapath/Presents

Real Frame Datapath/Presents

Upscale



13AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

• Swapchain handling has multiple possibilities for integration.
• The Cauldron sample shows a situation where there is already a DXGI swapchain present, and this swapchain is 

removed and replaced with the FrameInterpolation swapchain object FSR 3 creates
• This requires games are not using Exclusive Fullscreen.
• It recommended to replace swapchain creation with creation of a FrameInterpolation swapchain in the engine 

and always use the proxy swapchain, even when frame generation is disabled 

• For some titles this may not be ideal. Another option is to always use the FrameInterpolationSwapchain when 
FSR 3 Upscaling is enabled. 
• It is acceptable to require a game restart for this to take effect.

• The FrameInterpolation swapchain will not perform frame generation until it’s registered using 
ffxFsr3ConfigureFrameGeneration.
• When frame generation is disabled the FrameInterpolation swapchain will still handle UI composition.

• If another system is in place which also hooks into swap chain, undefined behaviors may mean a game restart 
is required to enable FSR 3.

FSR 3 NATIVE DX12 INTEGRATION - SWAPCHAIN



14AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

Create the FSR 3 Frame Generation Swapchain using one of the following functions

FSR 3 NATIVE DX12 INTEGRATION – SWAPCHAIN CREATION OPTIONS

To create a swap chain, when current integration uses IDXGIFactory::CreateSwapChain
ffxCreateFrameinterpolationSwapchainDX12(const DXGI_SWAP_CHAIN_DESC* desc, ID3D12CommandQueue* queue,

IDXGIFactory* dxgiFactory, FfxSwapchain& outGameSwapChain);

ffxCommandQueue – an object containing the Graphics command queue to use. When Async Compute workloads are disabled, this queue is used for Frame 
Generation Workloads.

To create a swap chain, when current integration uses IDXGIFactory2::CreateSwapChainForHwnd
ffxCreateFrameinterpolationSwapchainForHwndDX12(HWND hWnd, const DXGI_SWAP_CHAIN_DESC1* desc1, 

const    DXGI_SWAP_CHAIN_FULLSCREEN_DESC* fullscreenDesc, ID3D12CommandQueue* queue,
IDXGIFactory* dxgiFactory, FfxSwapchain& outGameSwapChain);

ffxCommandQueue – an object containing the Graphics command queue to use.

To replace an existing IDXGI swap chain, use:
ffxReplaceSwapchainForFrameinterpolationDX12(FfxCommandQueue gameQueue, FfxSwapchain& gameSwapChain);

ffxSwapChain – an object containing the current DXGI Swapchain, which will be released and replaced with a new Frame Generation swapchain, using same 
Descriptors.
Note: If the game supports Exclusive Fullscreen then this path is not recommended.



15AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

FSR 3 NATIVE DX12 INTEGRATION - INPLACE SWAPCHAIN CAULDRON SUPPLEMENTAL

// Set frameinterpolation swapchain to engine
IDXGISwapChain4* frameinterpolationSwapchain = ffxGetDX12SwapchainPtr(ffxSwapChain);
FrameworkPtr()->GetSwapChain()->GetImpl()->SetDXGISwapChain(frameinterpolationSwapchain);
// Framework swapchain adds to the refcount, so we need to release the swapchain here
frameinterpolationSwapchain->Release();

FfxCommandQueue ffxGameQueue = ffxGetCommandQueueDX12(DevicePtr()->DX12CmdQueue(CommandQueue::Graphics));
ffxReplaceSwapchainForFrameinterpolation(ffxGameQueue, ffxSwapChain);

// Take control over the engine swapchain: get the swapchain and then set to NULL in engine
IDXGISwapChain4* dxgiSwapchainEngine = cauldron::GetFramework()->GetSwapChain()->GetImpl()->DX12SwapChain();
dxgiSwapchainEngine->AddRef();

// Save desc state if we need to return to non FSR3 swapchain later
dxgiSwapchainEngine->GetDesc(&gameSwapChainDesc);
dxgiSwapchainEngine->GetDesc1(&gameSwapChainDesc1);
dxgiSwapchainEngine->GetFullscreenDesc(&gameFullscreenDesc);

// Create the FFX FrameInterpolationSwapchain
FfxSwapchain ffxSwapChain = ffxGetSwapchainDX12(dxgiSwapchainEngine);
// make sure engine pEngineSwapchain is not holding a ref to real swapchain
FrameworkPtr()->GetSwapChain()->GetImpl()->SetDXGISwapChain(nullptr);

// If app is handling Alt-Enter manually we need to update the window association after creating a different swapchain
IDXGIFactory7* factory = nullptr;
if (SUCCEEDED(frameinterpolationSwapchain->GetParent(IID_PPV_ARGS(&factory))))
{

factory->MakeWindowAssociation(FrameworkPtr()->GetHWND(), DXGI_MWA_NO_WINDOW_CHANGES);
factory->Release();

}
GetFramework()->GetSwapChain()->SetHDRMetadataAndColorspace();



16AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

• Internally, FSR 3 is implemented as multiple effects with separate backends. This is due to them 
occupying multiple areas of the render pipeline, and this ensures thread and data lifetime safety.

• In the sample we hold the backends and provide them in the FSR 3 context creation parameters as 
required.

FSR 3 NATIVE DX12 INTEGRATION – FSR 3 CONTEXT CREATION

// Setup Cauldron FidelityFX interface.
if (!ffxBackendInitialized_)
{

FfxErrorCode errorCode = 0;

int effectCounts[] = {1, 1, 2};
for (auto i = 0; i < FSR3_BACKEND_COUNT; i++)
{

const size_t scratchBufferSize = ffxGetScratchMemorySize(effectCounts[i]);
void*        scratchBuffer = calloc(scratchBufferSize, 1);
errorCode |= ffxGetInterface(&ffxFsr3Backends_[i], GetDevice(), scratchBuffer, scratchBufferSize, FFX_FSR3_CONTEXT_COUNT);

}

ffxBackendInitialized_ = (errorCode == FFX_OK);
FFX_ASSERT(ffxBackendInitialized_);

m_InitializationParameters.backendInterfaceSharedResources = ffxFsr3Backends_[FSR3_BACKEND_SHARED_RESOURCES];
m_InitializationParameters.backendInterfaceUpscaling = ffxFsr3Backends_[FSR3_BACKEND_UPSCALING];
m_InitializationParameters.backendInterfaceFrameInterpolation = ffxFsr3Backends_[FSR3_BACKEND_FRAME_INTERPOLATION];

}



17AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

FSR 3 NATIVE DX12 INTEGRATION – FSR 3 CONTEXT CREATION
// Setup FidelityFX backend
const ResolutionInfo& resInfo = GetFramework()->GetResolutionInfo();
m_InitializationParameters.maxRenderSize.width = resInfo.RenderWidth;
m_InitializationParameters.maxRenderSize.height = resInfo.RenderHeight;
m_InitializationParameters.upscaleOutputSize.width = resInfo.DisplayWidth;
m_InitializationParameters.upscaleOutputSize.height = resInfo.DisplayHeight;
m_InitializationParameters.displaySize.width = resInfo.DisplayWidth;
m_InitializationParameters.displaySize.height = resInfo.DisplayHeight;
m_InitializationParameters.flags = FFX_FSR3_ENABLE_DEPTH_INVERTED | FFX_FSR3_ENABLE_DEPTH_INFINITE |

FFX_FSR3_ENABLE_HIGH_DYNAMIC_RANGE | FFX_FSR3_ENABLE_AUTO_EXPOSURE;
#if defined(_DEBUG)
m_InitializationParameters.flags |= FFX_FSR3_ENABLE_DEBUG_CHECKING;
m_InitializationParameters.fpMessage = &FSR3RenderModule::FfxMsgCallback;
#endif  // #if defined(_DEBUG)

// Async OF+FI can allow for more performance, however, requires careful state management. Validate without Async first.
if (m_EnableAsyncCompute) {

m_InitializationParameters.flags |= FFX_FSR3_ENABLE_ASYNC_WORKLOAD_SUPPORT;
}
m_InitializationParameters.backBufferFormat = GetFfxSurfaceFormat(GetFramework()->GetSwapChain()->GetSwapChainFormat());

// create the context.
FfxErrorCode errorCode = ffxFsr3ContextCreate(&m_FSR3Context, &m_InitializationParameters);



18AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

FSR 3 NATIVE DX12 INTEGRATION – FSR 3 CONFIGURE

// configure frame generation
m_FrameGenerationConfig.frameGenerationEnabled = m_FrameGenEnabled;
m_FrameGenerationConfig.frameGenerationCallback = ffxFsr3DispatchFrameGeneration;
m_FrameGenerationConfig.swapChain = ffxSwapChain;
m_FrameGenerationConfig.presentCallback = (s_uiRenderMode == UI_CALLBACK) ? UiCompositionCallback : nullptr;
m_FrameGenerationConfig.HUDLessColor = (s_uiRenderMode == UI_HUDLESSCOLOR) ? hudLessResource : FfxResource({});
m_FrameGenerationConfig.flags |= m_DrawDebugTearLines ? FFX_FSR3_FRAME_GENERATION_FLAG_DRAW_DEBUG_TEAR_LINES : 0;
m_FrameGenerationConfig.flags |= m_DrawDebugView ? FFX_FSR3_FRAME_GENERATION_FLAG_DRAW_DEBUG_VIEW : 0;
m_FrameGenerationConfig.allowAsyncWorkloads = m_AllowAsyncCompute && m_EnableAsyncCompute;

ffxFsr3ConfigureFrameGeneration(&m_FSR3Context, &m_FrameGenerationConfig);

• To be called once a frame, before Frame Generation dispatch.

• Includes enable bit for frame Generation

• Provide the swapchain

• Provide the Frame Generation Callback, if using it (manually dispatch frame generation if not)
• frameGenerationCallback

• Provide any UI composition resources/functions
• “Hudless Scene” resource HUDLessColor
• UI Composition callback function presentCallback



19AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

FSR 3 NATIVE DX12 INTEGRATION – FSR 3 CONFIGURE CONTINUED

// configure UI resource
FfxResource uiColor = (s_uiRenderMode == UI_TEXTURE)

? ffxGetResource(m_pUiTexture[m_curUiTextureIndex]->GetResource(), L"FSR3_UiTexture", FFX_RESOURCE_STATE_PIXEL_COMPUTE_READ)
: FfxResource({});

cauldron::SwapChain* pSwapchain = GetFramework()->GetSwapChain();
FfxSwapchain ffxSwapChain = ffxGetSwapchainDX12(pSwapchain->GetImpl()->DX12SwapChain());

ffxRegisterFrameinterpolationUiResource(ffxSwapChain, uiColor);

• To use “UI Generic” mode a resource is provided to the swapchain helper that is blended onto all frames.

• Can be set to a null resource to disable this mode.



20AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

FSR 3 NATIVE DX12 INTEGRATION – UPSCALE + AA
FfxFsr3DispatchUpscaleDescription dispatchParameters = {};
dispatchParameters.commandList = ffxGetCommandList(pCmdList);
dispatchParameters.color = ffxGetResource(m_pColorTarget->GetResource(), L"FSR3_Input_OutputColor", FFX_RESOURCE_STATE_PIXEL_COMPUTE_READ);
dispatchParameters.depth = ffxGetResource(m_pDepthTarget->GetResource(), L"FSR3_InputDepth", FFX_RESOURCE_STATE_PIXEL_COMPUTE_READ);
dispatchParameters.motionVectors = ffxGetResource(m_pMotionVectors->GetResource(), L"FSR3_InputMotionVectors", FFX_RESOURCE_STATE_PIXEL_COMPUTE_READ);
dispatchParameters.exposure = ffxGetResource(nullptr, L"FSR3_InputExposure", FFX_RESOURCE_STATE_PIXEL_COMPUTE_READ);
dispatchParameters.upscaleOutput = dispatchParameters.color;
dispatchParameters.reactive = ffxGetResource(m_pReactiveMask->GetResource(), L"FSR3_InputReactiveMap", FFX_RESOURCE_STATE_PIXEL_COMPUTE_READ);
dispatchParameters.transparencyAndComposition = ffxGetResource(m_pCompositionMask->GetResource(), L"FSR3_TransparencyAndCompositionMap", 

FFX_RESOURCE_STATE_PIXEL_COMPUTE_READ);

dispatchParameters.jitterOffset.x = -jitterX;
dispatchParameters.jitterOffset.y = -jitterY;
dispatchParameters.motionVectorScale.x = resInfo.fRenderWidth();
dispatchParameters.motionVectorScale.y = resInfo.fRenderHeight();
dispatchParameters.reset = m_shouldReset;
dispatchParameters.enableSharpening = m_RCASSharpen;
dispatchParameters.sharpness = m_Sharpness;
dispatchParameters.frameTimeDelta = (float)deltaTime * 1000.f; // Milliseconds!

dispatchParameters.preExposure = GetScene()->GetSceneExposure();
dispatchParameters.renderSize.width = resInfo.RenderWidth;
dispatchParameters.renderSize.height = resInfo.RenderHeight;

dispatchParameters.cameraFovAngleVertical = pCamera->GetFovY();
dispatchParameters.cameraFar = pCamera->GetFarPlane();
dispatchParameters.cameraNear = pCamera->GetNearPlane();

FfxErrorCode errorCode = ffxFsr3ContextDispatchUpscale(&m_FSR3Context, &dispatchParameters);



21AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

• When using the frame generation callback, the swapchain will queue the frame generation dispatch 
automatically. There will be no need to manually call ffxFsr3DispatchFrameGeneration

• This is the recommended path when integrating.

• See configure :

FSR 3 NATIVE DX12 INTEGRATION – FRAME GENERATION CALLBACK

m_FrameGenerationConfig.frameGenerationCallback = ffxFsr3DispatchFrameGeneration; 



22AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

FSR 3 NATIVE DX12 INTEGRATION – MANUAL FRAME GENERATION
FfxFrameGenerationDispatchDescription fgDesc = {};

IDXGISwapChain4* dxgiSwapchain = GetFramework()->GetSwapChain()->GetImpl()->DX12SwapChain();
ffxGetInterpolationCommandlist(ffxGetSwapchainDX12(dxgiSwapchain), fgDesc.commandList);

fgDesc.presentColor = backbuffer;
fgDesc.numInterpolatedFrames = 1;
fgDesc.outputs[0]            = ffxGetFrameinterpolationTextureDX12(ffxGetSwapchainDX12(dxgiSwapchain));

FfxErrorCode errorCode = ffxFsr3DispatchFrameGeneration(&fgDesc);

The backbuffer resource that will be 
presented and form the basis for frame 
generation.

Resource from swapchain 

• This is only required if not using the Frame Generation callback

• Note that Frame Generation does not have a context associated with it

• This implementation only supports a single Frame Generation context
• The context provided to ffxFsr3ConfigureFrameGeneration with Frame Generation enabled will be the 

context used



23AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

• UI composition and Present happen asynchronously to a game’s Frame Generation
• Note: the game needs to use multiple command lists to allow UI composition and presents to be 

injected on the GPUs graphics queue

• UI composition is a required step for FSR 3 integration
• Failure to implement this step will result in major UI artefacts when Frame Generation is enabled!

• FSR 3 supports three composition modes of UI (User Interface) rendering: 
• Callback (recommended)
• UI texture
• HUDLess (compatibility mode, not recommended)

• Pick the best one according to your needs (see next slides)
• One of them must be used. We recommend Callback for quality purposes.

FSR 3 NATIVE DX12 INTEGRATION: UI COMPOSITION



24AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

• Overload the UI composition by passing a callback function pointer in the 
FfxFrameInterpolationContextDescription which is part of the FfxFsrContextDescription 
on initialization

• Then call FSR3RenderModule::UiCompositionCallback
FfxErrorCode FSR3RenderModule::UiCompositionCallback(FfxInterface* backendInterface, 

const FfxSwapChainPresentDescription* params)

• Use this for more complex effects needed for the UI (e.g. blurring the UI background) or 
when low latency UI is desired

• Using this method the UI will be displayed at interpolated framerate
• We recommend only basic rendering is performed in this callback!

• UI callback will still be called even when FSR 3 Frame Generation is OFF
• Will be composited on top of the real frame in this case

• Note: UI callback composition mode is the recommended mode for UI composition

FSR 3 NATIVE DX12 INTEGRATION - UI CALLBACK COMPOSITION MODE



25AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

FSR 3 NATIVE DX12 INTEGRATION - UI CALLBACK COMPOSITION MODE

Pre-upscale 
post-

processing
Upscale

UI 
Composition 

Callback

Real 
Present

Post-upscale 
post-

processing
Render

UI 
Composition 

Callback

Interpolated 
Present

Frame Generation
& Composition pass

FSR 3 Async frame pacing thread

Interpolation
Swapchain

New UI render is deferred to 
FSR 3 Composition Callback.

UI can run at full display FPS.

Composition pass

Application thread calling swap chain Present()



26AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

FSR 3 NATIVE DX12 INTEGRATION - UI CALLBACK COMPOSITION MODE
WHEN FRAME GENERATION IS DISABLED

Pre-upscale 
post-

processing
Upscale

UI 
Composition 

Callback

Real 
Present

Post-upscale 
post-

processing
Render

Interpolation
Swapchain

New UI render is deferred to 
FSR 3 Composition Callback.

Composition pass

Application thread calling swap chain Present()



27AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

• Render UI into a dedicated texture
• Call ffxRegisterFrameInterpolationUiResource

• Provide FSR 3 swapchain and UI resource in NON_PIXEL_SHADER_RESOURCE

• FSR 3 will blend the UI onto the back buffer of both the interpolated and the real frame 
using the alpha channel of the UI texture 

• Using this method the UI will be displayed at render framerate (not interpolated)
• i.e. the same UI will be displayed for two consecutive frames if Frame Generation is enabled

• Note: If UI includes part of the currently-rendered frame (e.g. blurry background) then 
the Callback option is required otherwise artefacts will ensue

FSR 3 NATIVE DX12 INTEGRATION – UI TEXTURE COMPOSITION MODE



28AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

FSR 3 NATIVE DX12 INTEGRATION - UI TEXTURE COMPOSITION MODE

Pre-upscale 
post-

processing
Upscale

UI in 
separate 
resource

Post-upscale 
post-

processing
Render

Real 
Present

Interpolated 
Present

Frame Generation

FSR 3 Async frame pacing thread

Composition pass

Composition pass

Interpolation
Swapchain

Same UI is composited onto 
real and generated frames.
UI runs at render rate.

Application thread calling swap chain Present()



29AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

FSR 3 NATIVE DX12 INTEGRATION - UI TEXTURE COMPOSITION MODE
WHEN FRAME GENERATION IS DISABLED

Pre-upscale 
post-

processing
Upscale

UI in 
separate 
resource

Post-upscale 
post-

processing
Render

Real 
Present

Composition passInterpolation
Swapchain

UI is composited onto real frames.

Application thread calling swap chain Present()



30AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

• Provide FSR 3 with scene resource pre UI/HUD render
• Resource must be of same color and resource format as the swapchain present buffer

• Provide the resource in HUDLessColor as part of the FfxFrameGenerationConfig struct of 
ffxFsr3ConfigureFrameGeneration.
• NON_PIXEL_SHADER_RESOURCE

• FSR 3 will blend the UI onto the back buffer of both the interpolated and the real frame 
using the alpha channel of the UI surface 

• Using this method the UI will be displayed at render framerate (not interpolated)
• i.e. the same UI will be displayed for two consecutive frames if Frame Generation is enabled

• Note: this mode is considered a compatibility mode and is not recommended as it will 
likely produce visual artefacts in the UI

FSR 3 NATIVE DX12 INTEGRATION - HUDLESS COMPOSITION MODE



31AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

FSR 3 NATIVE DX12 INTEGRATION - HUDLESS COMPOSITION MODE

Pre-upscale 
post-

processing
Upscale

Scene 
without 
UI/HUD

Post-upscale 
post-

processing
Render

Real 
Present

Interpolated 
Present

Frame Generation

FSR 3 Async frame pacing thread

Interpolation
Swapchain

Scene is provided to FSR 3 before UI is 
rendered. FSR 3 uses this data to generate 
UI masks. There is a possibility for 
artefacts on transparent elements.

UI

Application thread calling swap chain Present()



32AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

FSR 3 INTEGRATION STEPS (UNREAL ENGINE 5)



33AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

• The FSR 3 and FSR3MovieRenderPipeline plugins are intended for Unreal Engine 5.1.1* or later. 
If you are not a registered Unreal Engine developer, you will need to follow these instructions
and register for access to this link.

• For optimal quality it is necessary to use Unreal Engine from source code and apply source code 
patches.
• To improve FSR 3’s handling of animated opaque materials:

• Use: git apply <VERS>-LitReactiveShadingModel.patch
• Where <VERS> should be the engine-version in use.

• Install the plugin into the Unreal Engine:
• Locate the Engine/Plugins directory of your Unreal Engine installation.
• Extract the contents of the FSR3.zip file.
• Select the sub-folder that corresponds to the Unreal Engine version to be used.
• Place the FSR3 folder within your Unreal Engine source tree at: Engine/Plugins/Marketplace

• (Optional) Place the FSR3MovieRenderPipeline folder within your Unreal Engine source tree at: Engine/Plugins/Marketplace.

FSR 3 UE5 INTEGRATION - INSTALL

https://github.com/EpicGames/Signup


34AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

• To enable the plugin once installed:
• Open your Unreal Engine project in the Editor.
• Navigate to Edit > Plugins in the Unreal Engine toolbar.
• Within the plugin dialog:

• Ensure that All is selected on the left side.
• Type fsr into the search box in the top right corner.
• Select the Enabled checkbox for the FSR 3.0 plugin.

• i. (Optional) Select the Enabled checkbox for the FSR3MovieRenderPipeline plugin.
• When prompted, click Restart Now to apply changes, and restart Unreal Engine.

FSR 3 UE5 INTEGRATION – ENABLE PLUGIN



35AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

• Temporal Upsampling must be enabled in the Project Settings > Rendering window, accessed via Edit > 
Project Settings in the Unreal Engine toolbar or via the Console Variable `r.TemporalAA.Upsampling`.

• FSR 3.0 can be enabled or disabled via the Enabled option in the Project Settings > FidelityFX Super 
Resolution 3.0 settings window, or with the console variable `r.FidelityFX.FSR3.Enabled` in the 
configuration files. The variable can be modified at runtime *however* this is not guaranteed to be safe 
when other third-party upscalers are also enabled.

FSR 3 UE5 INTEGRATION – BASIC USAGE



36AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

• The plugin will use specific quality modes specified via `r.FidelityFX.FSR3.QualityMode` overriding 
`r.ScreenPercentage`. The exposed modes are:
• Native AA (1.0x): `r.FidelityFX.FSR3.QualityMode 0`

• Provides an image quality superior to native rendering with a modest performance cost.
• Quality (1.5x): `r.FidelityFX.FSR3.QualityMode 1`

• Provides an image quality equal or superior to native rendering with a significant performance gain.
• Balanced (1.7x): `r.FidelityFX.FSR3.QualityMode 2`

• Offers an ideal compromise between image quality and performance gains.
• Performance (2.0x): `r.FidelityFX.FSR3.QualityMode 3`

• Provides an image quality similar to native rendering with a major performance gain.
• Ultra Performance (3.0x): `r.FidelityFX.FSR3.QualityMode 4`

• Provides the highest performance gain while still maintaining an image quality representative of native rendering.

FSR 3 UE5 INTEGRATION – QUALITY MODES



37AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

• Optimizing translucency appearance:
While the default settings for the FSR 3 Reactive Mask should generate reasonable results, it is important that 
developers are aware that the appearance can be altered via the `r.FidelityFX.FSR3.ReactiveMask` console-
variables. Tuning these variables to suit the content may be necessary to optimize visual results.

• Translucent skyboxes and background planes:
When using a skybox or a distant background plane it is beneficial for this to be rendered with the Opaque or 
Masked shading model when using FSR 3. If these are rendered with the Translucent shading model they can result 
in unnecessary artefacts. 
To reduce artefacts when opaque objects occlude a translucent skybox the FSR 3 plugin will fade out translucency 
contribution based on reconstructed distance from the camera, the distance at which this occurs can be controlled 
with the `r.FidelityFX.FSR3.ReactiveMaskTranslucencyMaxDistance` console variable.
When using an opaque skybox or backplane, adjust the`r.FidelityFX.FSR3.ReactiveMaskTranslucencyMaxDistance`
console variable to avoid translucency cut-outs.

• Hair and dither effects:
FSR 3 does not smooth dither effects in the way other upscalers do. They are retained as thin features which may 
not be intentional. To avoid this, especially with hair, enable the `r.FidelityFX.FSR3.DeDither` console variable which 
attempts to smooth dither effects prior to FSR 3 upscaling.

FSR 3 UE5 INTEGRATION – RECOMMENDATIONS



38AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

• World-Position-Offset on static objects:
In specific circumstances static objects that use a material with World-Position-Offset do not always generate 
motion vectors which may result in blurring/ghosting of the affected objects.
If it is necessary `r.Velocity.ForceOutput` can be used to force all primitives to emit velocity.

• Animated opaque materials:
Animated opaque materials which do not generate motion vectors for the animated content, such as in-world video 
screens, may also blur or ghost when obscured by static geometry. This can be reduced by ensuring such materials 
write into the Reactive Mask generated in the plugin. 
• For the Deferred Renderer:

• Select a Shading Model for the ‘Reactive Shading Model’ option in the FSR 3 section of the project settings or using the 
`r.FidelityFX.FSR3.ReactiveMaskForceReactiveMaterialValue` console variable. 

• The ‘LitReactiveShadingModel’ engine patch which adds a new ‘LitReactive’ shading model that can be used specifically 
for this purpose.

• Specify the reactive value to write in `r.FidelityFX.FSR3.ReactiveMaskForceReactiveMaterialValue` console variable or via 
the material’s CustomData0.x channel. 

• Substrate materials (Strata in Unreal 5.1) and the Forward Renderer are not supported.

FSR 3 UE5 INTEGRATION – RECOMMENDATIONS



39AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

• Frame Generation can be enabled or disabled via the Project Settings > FidelityFX Super Resolution 3.0
settings panel by changing the setting of ‘Frame Generation Enabled’.
• It does not affect the Editor and requires the FSR3 temporal upscaler to be enabled as it requires inputs 

generated by the upscaling component. 

• Frame Generation supports both an RHI and Direct3D 12 backend. 
• The default is the native Direct3D 12 backend as it provides better performance and frame pacing via the FSR3 

proxy IDXGISwapChain implementation. 
• D3D12 Async. Present: `r.FidelityFX.FI.OverrideSwapChainDX12`

• Enables the FSR3 proxy IDXGISwapChain implementation. This is a read-only setting, a restart is required to modify.
• D3D12 Async. Interpolation: `r.FidelityFX.FI.AllowAsyncWorkloads`

• Executes frame interpolation on Async. Present queue for concurrent execution with following frame to improve performance.

• The RHI backend can be used on other platforms to provide basic frame generation support running serially after 
the end of the game frame and using the in-built Slate and RHI presentation framework.

• If using the RHI Backend then V-Sync should be enabled as this backend does not provide any form of frame pacing.

FSR 3 UE5 INTEGRATION – FRAME GENERATION



40AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

FSR 3 TECHNICAL DETAILS AND GUIDELINES



41AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

• FSR 3 Frame Generation runs best when interpolating from a minimum of 60 fps pre-
interpolation (e.g. after upscale)

• Whilst FSR 3 can roughly double any input frame rate, going below 60 is not recommended 
• This is due to interpolation visual artefacts being more prominent at lower frame rates
• Any fps below 30 fps pre-interpolation should be absolutely avoided

• Altering FSR 3 behaviour based on sub-60 fps detection is not recommended
• Better to educate users about this and let them adjust their own graphics settings as needed

FSR 3 FRAME GENERATION – MINIMUM FRAME RATE



42AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

• To calculate fps when FSR 3 frame generation is on, you can use the following function:
FrameInterpolationSwapChainDX12::GetLastPresentCount()

• Please refer to how the sample outputs “Display FPS” to calculate fps

FSR 3 FRAME GENERATION –FRAME RATE DISPLAY



43AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

• FreeSync, G-Sync and Adaptive Sync are all forms of Variable Refresh Rate technologies
• With VRR, refresh rate is dictated by frames sent by the GPU to the monitor

• FSR 3 Frame Generation behaves according to the following table

FSR 3 VARIABLE REFRESH RATE CONSIDERATIONS

VRR OFF VRR ON

V-Sync OFF Tearing will be seen at all frame rates. Recommended setting if frame times are highly variable
Some tearing may appear in some circumstances (e.g. fps close to or 
above monitor’s max refresh).
Hardware Accelerated GPU Scheduling disabled may result in more 
tearing.

V-Sync ON Tearing-free experience at all frame rates.
FPS limited to integer multiple of max refresh when fps is 
under max refresh. This may cause “judder” due to uneven 
sync intervals.

Recommended setting if frame times are stable (e.g. via limiter)
Tearing-free experience at all FPS
Frame rate will be capped at monitor’s maximum refresh rate.
Render rate is implicitly limited to half of the monitor’s max refresh 
rate

• It is highly recommended that games implement a frame limiter to provide options to 
players who want a steady framerate



44AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

• FSR 3 has a debug view for Frame Generation and screen tearing
• To enable it, configure with the FFX_FSR3_FRAME_GENERATION_FLAG_DRAW_DEBUG_TEAR_LINES flag

• FSR 3 will then render a solid green bar on the left, and a bar on the right which cycles through colors
• A large red square in top left indicates Optical Flow has detected the scene has changed significantly.
• A blue square in top left indicates the RESET passed to FSR 3 Frame Generation is TRUE

• With V-Sync enabled these bars should flicker entirely to show alternative frames being generated in 
perfect circumstances

• With FPS > Monitor Refresh Rate, and tearing enabled, these bars allow developers to see the tear 
regions clearly and tweak any particular frame pacing issue that may require per-game tuning

VISUAL DEBUG MARKERS



45AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

• FSR 3 has a debug view for integration testing
• To enable it, configure with the FFX_FSR3_FRAME_GENERATION_FLAG_DRAW_DEBUG_VIEW flag

VISUAL DEBUG MARKERS

GameMotionVectorFieldVectors GameMotionVectorFieldDepthPriority OpticalFlowMotionVectorField

Interpolated frame only 

Disocclusion mask Interpolation source (without UI) Latest real backbuffer (HUDless mode only)



46AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

• Motion vectors must be provided to the FSR 3 upscale component in the same way as 
FSR 2

• Motion vectors should be of minimum 16-bit precision for quality purposes
• All opaque elements and elements writing depth should have motion vectors:

• Foliage and all other alpha tested materials
• Playable characters & NPCs
• Vehicles and other deformable geometry

• If elements have incorrect or missing motion vectors, ghosting will occur when upscaling

• If upscaling has poor motion vector inputs, interpolated frames will amplify artefacts!

MOTION VECTORS



47AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

• Using FSR 3 FrameinterpolationSwapchain has a slight performance impact even if frame 
generation is disabled (one extra back buffer copy)
• When switching the swapchain, the game must not be in Exclusive Fullscreen mode

• FSR 3 and DLSS 3 should not be enabled at the same time
• When creating the FSR 3 FrameInterpolationSwapChain DLSS 3 hooking should already be disabled

• It is strongly recommended to integrate FSR 3 via the DLL method
• It allows better debugging from AMD if the need arises
• It allows better future compatibility with newer versions of the technology

FSR 3 CONSIDERATIONS



48AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

• FSR 3 Frame Generation shares some resources generated in upscaling
Compared to FSR 2, the following resources have extended lifetimes and can’t be aliased:
• DilatedDepth
• DilatedMotionVectors
• ReconstructedPrevNearestDepth

• When Async Queue usage is enabled, the shared resources will get double buffered
• This prevents issues when frame interpolation overlaps with next frames upscaling

• When UITexture composition mode is used:
• The UITexture will get used in composition (or the UI callback)
• The application is responsible to ensure it persists until composition of the real frame is finished

• When HUDLess composition mode is used:
• The HUDLess texture will be used during FrameInterpolation
• The application is responsible to ensure it persists until FrameInterpolation is complete

RESOURCE LIFETIMES



49AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

• FSR 3 introduces a new Quality mode: Native AA
• In this mode FSR 3 Upscaling is a pure AA option (no actual upscaling takes place)
• “Native AA” with “Frame Generation” enabled together essentially provide frame 

generation without upscaling

• Note: Native AA quality mode has the largest performance overhead!

• Note: Native AA quality mode still requires Reactive and Transparency & Composition 
masks to work correctly!

NEW FSR 3 QUALITY MODE: NATIVE AA



50AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

VERSIONS OF FSR
FSR 
version

Technology description Quality modes 
supported

API support Hardware support1

FSR 1
Spatial upscale of input frames Ultra Quality

Quality
Balanced
Performance

DX12, DX11, Vulkan®
UE4, UE5, Unity HDRP & URP

RX 460 and above
Xbox Series X and S

FSR 2
Temporal upscale of input frames Quality

Balanced
Performance
Ultra performance

DX12, DX112, Vulkan
UE4, UE5, Unity URP

RX Vega Series and above
Xbox Series X and S3

FSR 3

Temporal upscale of input frames 
with frame generation

Native AA
Quality
Balanced
Performance
Ultra performance

DX12, Vulkan (in development)
UE5

AMD RDNA Series and 
above
Xbox Series X and S3

1 AMD FidelityFX Super Resolution is “game dependent” and is only supported if the 
minimum requirements of the game are met. 
2 On demand only
3 FSR 3 memory requirements may require special considerations on Xbox Series S



51AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

FSR 3 PERFORMANCE OVERHEAD

FSR 3 Target 
resolution Quality mode Enthusiast GPUs

(AMD RADEON™ RX 7900 XTX)
Performance GPUs

(AMD RADEON™ RX 6800 XT)
Mainstream GPUs

(AMD RADEON™ RX 5700 XT)

Upscale (ms) Frame Generation (ms, up to) Upscale (ms) Frame Generation (ms, up to) Upscale (ms) Frame Generation (ms, up to)

4K
Native AA 1.4 2.4 2.3 4.2 4.7 8.0

Quality 0.9 1.6 1.5 2.7 3.4 5.9

Performance 0.7 1.4 1.3 2.3 3.0 5.3

1440p
Native AA 0.6 1.0 0.9 1.6 2.1 3.6

Quality 0.4 0.8 0.7 1.3 1.6 2.9

Performance 0.3 0.7 0.6 1.0 1.3 2.5

1080p
Native AA 0.3 0.7 0.6 1.0 1.2 2.2

Quality 0.2 0.5 0.4 0.8 0.9 1.6

Performance 0.2 0.5 0.4 0.7 0.8 1.5

• Performance taken from FidelityFX SDK sample and Microsoft® PIX
• Sharpening disabled, async compute disabled 
• Integrating FSR 3 with async compute can help reduce the cost of frame generation by having it 

scheduled asynchronously

Configuration: MSI X570-A Pro, AMD Ryzen™ 9 5900X @ 3.70 Ghz, System RAM: 16GB G.Skill DDR4-3600 CL16-16-16-36, Windows® 10 Pro 64-bit, AMD Software: Adrenalin Edition 23.11.1



52AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

Output resolution Upscaling quality mode Input resolution Memory usage
(upscaling only)

Memory usage
(upscaling + FG)

4K
Native AA 3840 x 2160 628 MB 984 MB

Quality 2560 x 1440 437 MB 648 MB

Balanced 2258 x 1270 396 MB 576 MB

Performance 1920 x 1080 365 MB 512 MB

1440p
Native AA 2560 x 1440 293 MB 460 MB

Quality 1706 x 960 204 MB 303 MB

Balanced 1505 x 847 186 MB 270 MB

Performance 1280 x 720 169 MB 241 MB

1080p
Native AA 1920 x 1080 169 MB 267 MB

Quality 1280 x 720 116 MB 174 MB

Balanced 960 x 540 107 MB 158 MB

Performance 640 x 360 102 MB 149 MB

FSR 3 MEMORY USAGE
• FSR 3 Upscaling + Frame Generation, async compute off, UI Callback composition mode

• Note: FSR 3 memory usage is higher in async compute mode due to double buffering shared resources



53AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

USER INTERFACE GUIDE



54AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

FSR 3 UI GUIDE - OVERVIEW
• The FSR 3 UI should be composed of two elements labelled as such:

• AMD FSR 3: a selection between all supported FSR 3 quality modes
• AMD FSR 3 Frame Generation: either On or Off

• Default FSR 3 API usage requires:
• AMD FSR 3 to be set to one of the FSR 3 quality modes when AMD FSR 3 Frame Generation is on
• If AMD FSR 3 is set to Off then AMD FSR 3 Frame Generation must be automatically set to Off and grayed out

• AMD FSR 3 Frame generation can be enabled with any FSR 3 quality modes
• Native AA, Quality, Balanced, Performance (and optionally Ultra Performance)

• Ensure your game exposes an option to limit fps in order to provide steadier frame inputs to FSR 3

• Due to interactions with similar technologies a game restart may be an acceptable solution to enable FSR 3
• However the toggling of the Frame Generation feature of FSR 3 should not require a restart



55AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

FSR 3 UI GUIDE – VISUAL EXAMPLE 1

AMD FSR 3 Quality Balanced Performance Ultra 
Performance

On

Off

OffAMD FSR 3 Frame 
Generation

AMD FSR 3 is set to Quality with Frame Generation on
(1.5x upscaling with frame interpolation enabled)

Native AA



56AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

FSR 3 UI GUIDE – VISUAL EXAMPLE 2

AMD FSR 3 is set to Performance with Frame Generation off
(2.0x upscaling with Frame Generation disabled)

AMD FSR 3 Balanced Ultra 
Performance

Off

AMD FSR 3 Frame 
Generation

Native AA PerformanceQuality

Off On



57AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

FSR 3 UI GUIDE – VISUAL EXAMPLE 3

AMD FSR 3 is set to Native AA with Frame Generation on
(No upscaling with Frame Generation enabled)

AMD FSR 3 Balanced Ultra 
Performance

Off

AMD FSR 3 Frame 
Generation

Quality Performance

OnOff

Native AA



58AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

FSR 3 UI GUIDE – VISUAL EXAMPLE 4

AMD FSR 3 Balanced Ultra 
Performance

AMD FSR 3 Frame 
Generation

Quality Performance

AMD FSR 3 is completely off

Off

Off Native AA

On

(greyed out) (greyed out) (greyed out)



59AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

FSR 3 QUALITY MODES
FSR 3 quality mode Description Scale factor Input 

resolution
Output 

resolution

Native AA
Native AA mode provides an image quality 
superior to native rendering with a modest 

performance cost.

1.0x per dimension
(1.0x area scale)

(100% screen resolution)

1920 x 1080
2560 x 1440
3440 x 1440
3840 x 2160

1920 x 1080
2560 x 1440
3440 x 1440
3840 x 2160

Quality
Quality mode provides an image quality equal 

or superior to native rendering with a 
significant performance gain.

1.5x per dimension
(2.25x area scale)

(67% screen resolution)

1280 x  720
1706 x  960
2293 x  960
2560 x 1440

1920 x 1080
2560 x 1440
3440 x 1440
3840 x 2160

Balanced Balanced mode offers an ideal compromise 
between image quality and performance gains.

1.7x per dimension
(2.89x area scale)

(59% screen resolution)

1129 x  635
1506 x  847
2024 x  847
2259 x 1270

1920 x 1080
2560 x 1440
3440 x 1440
3840 x 2160

Performance
Performance mode provides an image quality 

similar to native rendering with a major 
performance gain.

2.0x per dimension
(4x area scale)

(50% screen resolution)

960 x  540
1280 x  720
1720 x  720
1920 x 1080

1920 x 1080
2560 x 1440
3440 x 1440
3840 x 2160

Ultra 
Performance*

Ultra Performance mode provides the highest 
performance gain while still maintaining an 

image quality representative of native rendering.

3.0x per dimension
(9x area scale)

(33% screen resolution)

640 x  360
854 x  480
1147 x 480
1280 x 720

1920 x 1080
2560 x 1440
3440 x 1440
3840 x 2160

*Optional mode to expose.



60AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

FSR 3 UI REQUIREMENTS – DESCRIPTION OF UI ELEMENTS
• Desired UI description for AMD FSR 3:

• “AMD FidelityFX Super Resolution 3 combines high-quality image upscaling with frame generation technologies 
to generate high resolution frames at fast frame rates”

• Desired UI description for AMD FSR 3 Frame Generation:
• “AMD FidelityFX Super Resolution 3 Frame Generation increases frame rate by creating additional frames 

computed from existing inputs.”

• Desired UI descriptions for FSR 3 quality modes:
• Please use the descriptions mentioned on the previous slide.

• Localization strings are available on the GPUOpen website at 
https://gpuopen.com/fidelityfx-naming-guidelines/



61AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

SHARPENING
• FSR 3 comes with its own optional sharpening pass

• It is strongly recommended that the game exposes a sharpening slider
• This is a common request from players

• If your game already supports a sharpening option in the UI please connect the value to the FSR 3 
parameter
• This is to avoid a clash with the sharpening feature of FSR 3
• Depending on the existing sharpening range, this may require some trivial remapping



62AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

COMPATIBILITY WITH THIRD-PARTY SOFTWARE OR CODE
• FSR 3 requires unencumbered access to the swap chain for best frame pacing results

• Software libraries that intercept DXGI calls may cause frame pacing issues with FSR 3

• Third-party software that intercept DXGI calls to display an on-screen overlay may be 
incompatible with FSR 3 Frame Generation 

• It is recommended to disable those for best frame pacing FSR 3 results
• AMD OCAT has been validated to work correctly with FSR 3 Frame Generation



63AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

HARDWARE ACCELERATED GPU SCHEDULING
• For best results with FSR 3 Frame Generation it is recommended that Hardware Accelerated GPU 

Scheduling be enabled in your Windows OS

• At the moment Hardware Accelerated GPU scheduling is supported on the following AMD GPUs under 
Windows® 11:
• Radeon RX 7900XTX
• Radeon RX 7900XT
• Radeon RX 7800XT
• Radeon RX 7700XT



64AMD FIDELITYFX™ SUPER RESOLUTION 3 – INTEGRATION OVERVIEW

SUMMARY
• FSR 3 combines upscaling and frame generation

• Compatible with VRR monitors

• A successful integration requires a quality FSR 3 upscaling implementation first (see slide 6)

• Default FSR 3 API behaviour requires an FSR 3 Quality mode to be enabled to use FSR 3 Frame Generation

• Integrate FSR 3 Frame Generation using the Presentation queue first to ensure correctness
• Then move to Async queue for best results

• A DLL integration is strongly recommended for debug and future compatibility purposes

• Use the optimal method for UI composition (Callback) – avoid HUDLess mode

• Follow recommendations for UI requirements

• Localization strings can be found on GPUOpen at https://gpuopen.com/fidelityfx-naming-guidelines/

• Please share pre-release FSR 3 integrations with your AMD Alliance Manager - AMD may be able to run it 
through our labs and give you feedback


	Integration overview�Version 3.0.3�(GPUOpen release version)
	OVERVIEW
	What is AMD fidelityfx™ super resolution 3?
	API INTEGRATION GUIDE
	fsr 3 integration guide - overview
	Requisite for successful fsr 3 integration
	FSR 3 integration steps (native dIRECTx® 12 version)
	FSR 3 Data Flow
	Fsr 3 native dx12 integration – Basic steps
	FSR 3 Optical Flow and Frame Generation workloads
	FSR 3 – PRESENT QUEUE Upscaling and Frame Generation Pipeline
	FSR 3 – ASYNC Upscaling and Frame Generation Pipeline
	FSR 3 native dx12 Integration - Swapchain
	FSR 3 native dx12 Integration – SWAPCHAIN CREATION Options
	FSR 3 native dx12 INTEGRATION - INPLACE SWAPCHAIN Cauldron SUPPLEMENTAL
	FSR 3 native dx12 Integration – FSR 3 Context Creation
	FSR 3 native dx12 Integration – FSR 3 Context Creation
	FSR 3 native dx12 Integration – FSR 3 CONFIGURE
	FSR 3 native dx12 Integration – FSR 3 CONFIGURE continued
	FSR 3 native dx12 Integration – Upscale + AA
	FSR 3 native dx12 Integration – Frame Generation Callback
	FSR 3 native dx12 Integration – Manual Frame generation
	FSR 3 native dx12 Integration: ui composition
	FSR 3 native dx12 Integration - ui callback composition mode
	FSR 3 native dx12 Integration - ui callback composition mode
	FSR 3 native dx12 Integration - ui callback composition mode�when frame generation is disabled
	FSR 3 native dx12 Integration – ui texture composition mode
	FSR 3 native dx12 Integration - ui Texture composition mode
	FSR 3 native dx12 Integration - ui Texture composition mode�when frame generation is disabled
	FSR 3 native dx12 Integration - HUDLESS composition mode
	FSR 3 native dx12 Integration - HUDLESS composition mode
	FSR 3 integration steps (uNREAL eNGINE 5)
	Fsr 3 ue5 integration - Install
	Fsr 3 ue5 integration – Enable Plugin
	Fsr 3 ue5 integration – Basic Usage
	Fsr 3 ue5 integration – Quality Modes
	Fsr 3 ue5 integration – Recommendations
	Fsr 3 ue5 integration – Recommendations
	Fsr 3 ue5 integration – Frame Generation
	FSR 3 technical details and guidelines
	fsr 3 frame generation – minimum frame rate
	fsr 3 frame generation –frame rate display
	FSR 3 Variable refresh rate considerations
	Visual Debug Markers
	Visual Debug Markers
	Motion vectors
	FSR 3 CONSIDERATIONS
	RESOURCE LIFETIMES
	New FSR 3 quality mode: Native aa
	Versions of fsr
	Fsr 3 performance overhead
	Fsr 3 Memory usage
	User interface GUIDE
	Fsr 3 ui guide - overview
	Fsr 3 ui guide – visual example 1
	Fsr 3 ui guide – visual example 2
	Fsr 3 ui guide – visual example 3
	Fsr 3 ui guide – visual example 4
	Fsr 3 quality modes
	Fsr 3 ui requirements – description of ui elements
	sharpening
	Compatibility with third-party software or code
	Hardware accelerated GPU scheduling
	summary

