
JASON LACROIX, AMD

FIDELITYFX
PARALLEL SORT



GPUOpen 2

FIDELITYFX
PARALLEL SORT

GPUOpen's FidelityFX Parallel Sort library provides an RDNA-optimized GPU Radix Sort 
implementation for sorting large data sets quickly



GPUOpen 3

In recent years, the number of algorithms that can benefit 
from a fast-sorting solution have grown. Some of these 
include:

• GPU-based particle rendering

• Ray sorting for more efficient ray tracing

• Tile sorting-based algorithms (binning, sorted blends, 
etc.)

Most existing solutions have small upper limits on dataset 
size

MOTIVATION



GPUOpen 4

PARALLEL SORT ALGORITHM



GPUOpen 5

FidelityFX Parallel Sort is based on the Radix sort algorithm

• One of the fastest sorting algorithms, especially for large datasets

• Works with a counting-offset scheme (as opposed to comparisons)

• Data can be sorted in an incremental fashion operating on a different subset in 
each pass
• FidelityFX Parallel Sort operates on an incrementing number of 4-bit passes

• For example, it takes 8 iterations to sort a 32-bit value set

ALGORITHM DETAILS



GPUOpen 6

Sorting n bits (example uses 4 bits, as in Parallel Sort)

Start with our input data set distributed equally across all executing threadgroups

ALGORITHM DETAILS

Input Buffer

…



GPUOpen 7

In each threadgroup, count the number of occurrences of each value in its data set

• SourceValue >> (4 bits/iteration * iteration pass) & 0xF

ALGORITHM DETAILS

Input Buffer

C0
0

…

C0
1 … C0

14 C0
15 C1

0 C1
1 … C1

14 C1
15 CN-2

0 CN-2
1 … CN-2

14 CN-2
15 CN-1

0 CN-1
1 … CN-1

14 CN-1
15…



GPUOpen 8

On each threadgroup, use a prefix scan to generate offsets for each value

ALGORITHM DETAILS

Input Buffer

C0
0

…

C0
1 … C0

14 C0
15 C1

0 C1
1 … C1

14 C1
15 CN-2

0 CN-2
1 … CN-2

14 CN-2
15 CN-1

0 CN-1
1 … CN-1

14 CN-1
15…

O0
0 O0

1 … O0
14 O0

15 O1
0 O1

1 … O1
14 O1

15 ON-2
0 ON-2

1 … ON-2
14 ON-2

15 ON-1
0 ON-1

1 … ON-1
14 ON-1

15…

C0
0 … C0

14 C0
15 C1

0

O0
0 O0

1 … O0
14 O0

15 O1
0 O1

1

C1
1 … C1

14

… O1
14 O1

15

C0
0 … C0

14 C0
15 C1

0

O0
0 O0

1 … O0
14 O0

15 O1
0 O1

1



GPUOpen 9

Reorder source values based on calculated offsets

ALGORITHM DETAILS

Input Buffer

C0
0

…

C0
1 … C0

14 C0
15 C1

0 C1
1 … C1

14 C1
15 CN-2

0 CN-2
1 … CN-2

14 CN-2
15 CN-1

0 CN-1
1 … CN-1

14 CN-1
15…

O0
0 O0

1 … O0
14 O0

15 O1
0 O1

1 … O1
14 O1

15 ON-2
0 ON-2

1 … ON-2
14 ON-2

15 ON-1
0 ON-1

1 … ON-1
14 ON-1

15…

… … … ……



GPUOpen 10

ALGORITHM IMPLEMENTATION



GPUOpen 11

• FidelityFX Parallel Sort operates on blocks of sequential data for optimal reads
• Block size = 4 elements per thread * 128 threads per threadgroup

• Each threadgroup will sort 1 or more blocks, depending on dataset size

• FidelityFX Parallel Sort goes through a 4-bit sort pass using 4 steps
• FFX_ParallelSort_Count_uint

• Sample only supports 32-bit uints as of this time

• FFX_ParallelSort_ReduceCount
• FFX_ParallelSort_ScanPrefix (x2)

• Called once on reduced counts

• And again on offsets with an additional add with reduced offsets

• FFX_ParallelSort_Scatter_uint
• Performs value (and payload) re-ordering based on calculated offsets

ALGORITHM IMPLEMENTATION



GPUOpen 12

• FFX_ParallelSort_Count_uint
• Reads in 128 sequential values across all threads simultaneously to load source values

• Performs InterlockedAdd on masked value in LDS to build a histogram of values across 
the threadgroup

• Counts across the threadgroup are summed and stored in a SumTable

• SumTable writes count<X> across all threadgroups sequentially

• i.e. [count00, count01, …, count0NumThreadgroups-1, count10, count11, …, count1NumThreadgroups-1, …]

ALGORITHM IMPLEMENTATION



GPUOpen 13

• FFX_ParallelSort_ReduceCount
• Designed to handle large datasets

• To optimize offset calculations, we reduce the value counts to generate global value counts

ALGORITHM IMPLEMENTATION

Input Buffer

C0
0

…

C0
1 … C0

14 C0
15 C1

0 C1
1 … C1

14 C1
15 CN-2

0 CN-2
1 … CN-2

14 CN-2
15 CN-1

0 CN-1
1 … CN-1

14 CN-1
15…

CTOTAL
0 CTOTAL

1 … CTOTAL
14 CTOTAL

15



GPUOpen 14

• FFX_ParallelSort_ScanPrefix
• First ScanPrefix pass will prefix the count totals into global offsets

ALGORITHM IMPLEMENTATION

CTOTAL
0 CTOTAL

1 … CTOTAL
14 CTOTAL

15

0 Offset1 … Offset14 Offset15



GPUOpen 15

• FFX_ParallelSort_ScanPrefix
• Second ScanPrefix pass will prefix the threadgroup counts into local offsets

• Also adds global offsets calculated previously to yield final sorted placement

ALGORITHM IMPLEMENTATION

0 Offset1 … Offset14 Offset15

C0
0 C0

1 … C0
14 C0

15 C1
0 C1

1 … C1
14 C1

15 CN-2
0 CN-2

1 … CN-2
14 CN-2

15 CN-1
0 CN-1

1 … CN-1
14 CN-1

15…

O0
0 O0

1 … O0
14 O0

15 O1
0 O1

1 … O1
14 O1

15 ON-2
0 ON-2

1 … ON-2
14 ON-2

15 ON-1
0 ON-1

1 … ON-1
14 ON-1

15…

+



GPUOpen 16

• FFX_ParallelSort_Scatter_uint
• Re-reads initial count values from the first part of the iteration

• Performs a local sort of all values in the threadgroup

• Writes out to the new sorted locations using calculated offsets

ALGORITHM IMPLEMENTATION



GPUOpen 17

INTEGRATION



GPUOpen 18

• Initialization
• Application must allocate scratchBuffer and reducedScratchBuffer

• Use FFX_ParallelSort_CalculateScratchResourceSize() to determine the size requirements 
for the buffers

• Other requirements
• App must provide 2 buffers of adequate size to perform ping-pong sorting of the dataset

• Doing in-place read/writes is not safe for large jobs and will lead to corruption due to values being 
moved multiple times (to the wrong location)

• Constant buffer of type FFX_ParallelSortCB

INTEGRATION - CPU



GPUOpen 19

• Run time
• Populate constant buffer parameters using 

FFX_ParallelSort_SetConstantAndDispatchData()

• Execute the sort loop 8 times (for 32-bit coverage over 4-bit iterations)

• See FFXParallelSort::Sort() for implementation details

INTEGRATION - CPU



GPUOpen 20

• Create shaders required to call into Parallel Sort shader library
• FFX_ParallelSort_Count_uint

• FFX_ParallelSort_ReduceCount

• FFX_ParallelSort_ScanPrefix (x2)

• FFX_ParallelSort_Scatter_uint

• Please refer to ParallelSortCS.hlsl in the sample

INTEGRATION - GPU



21



GPUOpen 22

DISCLAIMER & ATTRIBUTION

DISCLAIMER

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions,
and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons,
including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product
releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any 
computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation 
to update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make 
changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE 
CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY 
APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, 
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON 
FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF 
ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION

© 2021 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, RadeonTM and combinations thereof are 
trademarks of Advanced Micro Devices, Inc. in the United States and/or other jurisdictions. Vulkan® is a registered trademark of the 
Khronos Group Inc. DirectX is a registered trademark of Microsoft Corporation. Other names are for informational purposes only and 
may be trademarks of their respective owners.


