
RDNA Architecture

Forward-looking statement

This presentation contains forward-looking statements concerning Advanced Micro Devices, Inc. (AMD) including, but not
limited to, the features, functionality, performance, availability, timing, pricing, expectations and expected benefits of
AMD’s current and future products, which are made pursuant to the Safe Harbor provisions of the Private Securities
Litigation Reform Act of 1995. Forward-looking statements are commonly identified by words such as "would," "may,"
"expects," "believes," "plans," "intends," "projects" and other terms with similar meaning. Investors are cautioned that the
forward-looking statements in this presentation are based on current beliefs, assumptions and expectations, speak only as
of the date of this presentation and involve risks and uncertainties that could cause actual results to differ materially from
current expectations. Such statements are subject to certain known and unknown risks and uncertainties, many of which
are difficult to predict and generally beyond AMD's control, that could cause actual results and other future events to differ
materially from those expressed in, or implied or projected by, the forward-looking information and statements. Investors
are urged to review in detail the risks and uncertainties in AMD's Securities and Exchange Commission filings, including but
not limited to AMD's Quarterly Report on Form 10-Q for the quarter ended March 30, 2019

2

Highlights of the RDNA Workgroup Processor (WGP)

▪ Designed for lower latency and higher effective IPC

▪ Native Wave32 with support for Wave64 via dual-issue

▪ Single-cycle instruction issue

▪ Co-execution of transcendental arithmetic operations

▪ Resources of two Compute Units available to a single workgroup

▪ 2x scalar execution resources

▪ Vector memory improvements

3

GCN Compute Units

▪ 4 Compute Units:

▪ RX590 has 36 CU, RX Vega64 has 64 CU

L1$

Texture
Addresser

Texture Data

I$
K$

LDSSIMD16SIMD16SIMD16SIMD16SALU

L1$

Texture
Addresser

Texture Data

LDSSIMD16SIMD16SIMD16SIMD16SALU

L1$

Texture
Addresser

Texture Data

LDSSIMD16SIMD16SIMD16SIMD16SALU

L1$

Texture
Addresser

Texture Data

LDSSIMD16SIMD16SIMD16SIMD16SALU

4

▪ 2 Workgroup Processors:

▪ “Navi” has 20 WGP, corresponding to 40 CU

LDS

SIMD32SALU SIMD32SALU

SIMD32SALU SIMD32SALU

SIMD32SALU SIMD32SALU

SIMD32

RDNA Workgroup Processors (WGP)

L0$

Texture
Addresser

Texture Data
I$
K$

LDS

SALU

L0$

Texture
Addresser

Texture Data

L0$

Texture
Addresser

Texture Data

L0$

Texture
Addresser

Texture Data

I$
K$

SIMD32SALU

5

4-cycle instruction issue on GCN

▪ Each wave is assigned to one SIMD16, up to 10 waves per SIMD16

▪ Each SIMD16 issues 1 instruction every 4 cycles

▪ Vector instructions throughput is 1 every 4 cycles

SIMD16SIMD16SIMD16SIMD16SALU

SIMD0 SIMD1

0-15

SIMD2 SIMD3

16-31 32-47 48-63

0-15 16-31 32-47 48-63

0-15 16-31 32-47 48-63

0-15 16-31 32-47 48-63

SIMD0 SIMD1

0-15

SIMD2 SIMD3

16-31 32-47 48-63

0-15 16-31 32-47 48-63

0-15 16-31 32-47 48-63

0-15 16-31 32-47 48-63

SALU

SIMD0

SIMD1

SIMD2

SIMD3

Cycle 0 1 2 3 4 5 6 7

6

Single-cycle instruction issue on RDNA

▪ Each wave is assigned to one SIMD32, up to 20 waves per SIMD32

▪ Each SIMD32 issues 1 instruction every cycle

▪ Vector instruction throughput is 1 every cycle (for Wave32)

▪ 5 cycles of latency are exposed (automatic dependency check in hardware)

⁃ Dependency stalls can be filled by other waves

SIMD32SALU

7

Single-cycle instruction issue: ILP and scheduling matters

v_fma_f32 v4, v0, s0, s3

v_fmac_f32 v4, v1, s1

v_fma_f32 v5, v0, s4, s7

v_fmac_f32 v5, v1, s5

v_fma_f32 v6, v0, s8, s11

Cycle

v_fmac_f32 v6, v1, s9

0 1 2 3 4 5 6 7 8 9 10 11

v_fma_f32 v4, v0, s0, s3

v_fma_f32 v5, v0, s4, s7

v_fma_f32 v6, v0, s8, s11

v_fmac_f32 v4, v1, s1

v_fmac_f32 v5, v1, s5

Cycle

v_fmac_f32 v6, v1, s9

0 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 16 17 18

8

Transcendental math co-execution

▪ rcp/rsq/sqrt/log/exp/sin/cos

▪ Transcendental instructions are ¼ rate (like GCN)

▪ Non-transcendental instructions can execute in parallel

v_rcp_f32 v14, v14

v_fma_f32 v8, v0, s4, v2

v_fma_f32 v9, v1, s4, v3

v_rcp_f32 v15, v15

v_fma_f32 v10, v4, s4, v5

Cycle 0

v_fma_f32 v11, v6, s4, v7

v_mul_f32 v8, v8, v14

v_mul_f32 v9, v9, v14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

9

▪ Wave64 on GCN

▪ 2x Wave32 on RDNA – one per SIMD32

▪ With small dispatches, RDNA behaves significantly better than GCN

Instruction latency: GCN vs. RDNA

v_rcp_f32 v14, v14

v_fma_f32 v8, v0, s4, v2

v_fma_f32 v9, v1, s4, v3

v_rcp_f32 v15, v15

v_fma_f32 v10, v4, s4, v5

v_fma_f32 v11, v6, s4, v7

v_mul_f32 v8, v8, v14

v_mul_f32 v9, v9, v14

v_rcp_f32 v14, v14

v_fma_f32 v8, v0, s4, v2

v_fma_f32 v9, v1, s4, v3

v_rcp_f32 v15, v15

v_fma_f32 v10, v4, s4, v5

v_fma_f32 v11, v6, s4, v7

v_mul_f32 v8, v8, v14

v_mul_f32 v9, v9, v14

10

Vector register file (VGPRs)

▪ Each SIMD32 has 1024 physical registers

▪ Divided among waves, up to 256 each

▪ Wave64 "counts double"

▪ Examples:

⁃ 4x Wave32 with 256 VGPRs

⁃ 2x Wave64 with 256 VGPRs

⁃ 16x Wave32 with 64 VGPRs

⁃ 8x Wave64 with 64 VGPRs

▪ Occupancy in "# of threads per SIMD lane" is unchanged from GCN

⁃ Occupancy 4 on GCN = 16 threads per lane

⁃ RDNA equivalent: 16x Wave32 or 8x Wave64

▪ Call to action:

⁃ Think about occupancy in terms of "# of threads per SIMD lane"

11

▪ GCN: Wave64, 128 VGPR allocation

▪ RDNA: Wave32, 128 VGPR allocation

Vector register-based occupancy illustrated

SIMD16SIMD16

0

256

16 DW 16 DW 16 DW 16 DW 16 DW 16 DW 16 DW 16 DW

0

256

32 DW 32 DW 32 DW 32DW

128

128

32

SIMD32

12

Keeping the SIMD busy: GCN vs. RDNA

▪ Example: Small dispatch, 64 threads only

L1$

Texture
Addresser

Texture Data

LDSSIMD16SIMD16SIMD16SIMD16SALU

SIMD32SALU SIMD32SALU

SIMD32 L0$

Texture
Addresser

Texture Data

LDS

SALU

L0$

Texture
Addresser

Texture Data

SIMD32SALU

L1$

Texture
Addresser

Texture Data

LDSSIMD16SIMD16SIMD16SIMD16SALU

13

Keeping the SIMD busy: GCN vs. RDNA

▪ RDNA requires much fewer threads for all blocks to light up:

L1$

Texture
Addresser

Texture Data

LDSSIMD16SIMD16SIMD16SIMD16SALU

SIMD32SALU SIMD32SALU

SIMD32 L0$

Texture
Addresser

Texture Data

LDS

SALU

L0$

Texture
Addresser

Texture Data

SIMD32SALU

L1$

Texture
Addresser

Texture Data

LDSSIMD16SIMD16SIMD16SIMD16SALU

14

Keeping the SIMD busy: GCN vs. RDNA

▪ 2 CU require 2*4*64 = 512 threads to be able to reach 100% ALU utilization

▪ WGP requires 4*32 = 128 threads to be able to reach 100% ALU utilization

⁃ Only achieved with high instruction level parallelism (ILP)

⁃ Graphics workloads often have 3 independent streams (RGB / XYZ)

⁃ 256 threads / WGP often reach >90% ALU utilization in practice1

▪ Additional threads are needed on both GCN and RDNA to hide memory latency

⁃ Unless you can fill the wait with ALU (this is extremely rare)

⁃ # of threads required for memory latency hiding has reduced as well, but not as much

▪ Fewer threads required overall to keep the machine busy

⁃ Utilization ramps up more quickly after barriers

⁃ High VGPR counts hurt slightly less

▪ Call to action:

⁃ Keep ILP in mind when writing shader code

15

1 Observed in pixel shaders in a trace of a typical game rendering workload

What (not) to do for ILP

▪ Naïve idea: run multiple work items in a single thread

▪ Problems:

⁃ Code bloat (mind the I$ size!)

⁃ Higher VGPR count

⁃ Increases the effective dispatch granularity; more waste along the edges

▪Don't panic: extra waves are a really good source of parallelism

image_load v[0:1], …
s_waitcnt vmcnt(0)
v_mul_f32 v0, v0, s0
v_mul_f32 v1, v1, s0
image_store v[0:1], ...

image_load v[0:1], …
image_load v[2:3], …
s_waitcnt vmcnt(1)
v_mul_f32 v0, v0, s0
v_mul_f32 v1, v1, s0
s_waitcnt vmcnt(0)
v_mul_f32 v2, v2, s0
v_mul_f32 v3, v3, s0
image_store v[0:1], ...
image_store v[2:3], ...

16

▪ Vector instructions of Wave64 execute as 2x Wave32

▪ Same instructions, no code bloat

▪ When low or high half of EXEC is 0, that half skips execution

Wave64 via dual-issue

v_fma_f32 v4, v0, s0, s3

(high half)

v_fma_f32 v5, v0, s4, s7

(high half)

v_fma_f32 v6, v0, s8, s11

Cycle

(high half)

0 1 2 3 4 5 6 7 8 9 10 11

v_fmac_f32 v4, v1, s1

(high half)

17

Wave32 vs. Wave64

▪ Compiler makes the decision

⁃ Compute and vertex shaders usually as Wave32, pixel shaders usually as Wave64

⁃ Heuristics will continue to be tuned for the foreseeable future

▪ Call to action:

⁃ Make sure barriers in shaders are semantically correct!

⁃ The compiler removes unnecessary barriers

⁃ Enable variable subgroup size, especially when using wave/subgroup intrinsics (Vulkan extension pending…)

⁃ Workgroup size: keep it a multiple of 64

Wave32 Wave64

Lower latency / wave lifetime
Quicker ramp-up of WGPs after barriers
More efficient for partially filled waves
Tighter memory access patterns

Allows higher occupancy (# threads per lane)
More efficient for attribute interpolation

18

LDS per workgroup processor

▪ 128 kB per workgroup processor

▪ Shared memory for compute, attributes for pixel shaders

▪ Up to 64 kB per workgroup

▪ Read / write / atomic throughput of up to 32 dwords per cycle (doubled relative to GCN)

▪ 32 banks

⁃ Same as “Vega”

⁃ Mind the bank conflicts!

SIMD32SALU SIMD32SALU

SIMD32 L0$

Texture
Addresser

Texture Data
I$
K$

LDS

SALU

L0$

Texture
Addresser

Texture Data

SIMD32SALU

19

Additional IPC improvements

▪ Overall goal: fewer move instructions

▪ Dual scalar source

▪ All VALU instructions support immediates (96-bit instructions)

▪ Optional NSA (non-sequential address) encoding for image instructions

⁃ Avoids moves

⁃ Simplified register allocation helps reduce VGPR pressure

s_buffer_load_dwordx2 s[0:1], …
s_waitcnt lgkmcnt(0)
v_mov_b32 v1, s0
v_fma_f32 v0, v0, v1, s1

s_buffer_load_dwordx2 s[0:1], …
s_waitcnt lgkmcnt(0)
v_fma_f32 v0, v0, s0, s1

s_mov_b32 s0, 0x3f490fdb ; pi/4
v_mul_f32 v0, |v0|, s0

v_mul_f32 v0, |v0|, 0x3f490fdb

v_mov_b32 v7, v14
image_sample v[0:1], v[7:8], ...

image_sample v[0:1], [v14, v8], ...

20

Workgroup Processor summary

▪ Wave32 and single-cycle issue for better latency

▪ Co-execution of transcendental instructions

▪ Higher memory and LDS bandwidth, lower latency

▪ Calls to action:

⁃ Check your barriers!

⁃ Enable variable subgroup sizes once API support is there

⁃ Workgroup size: keep a multiple of 64

⁃ Keep an eye on instruction level parallelism (ILP), but don’t panic!

⁃ Calculate occupancy as "# threads per SIMD lane“

⁃ Worry a little less about VGPR pressure

⁃ Worry a little more about LDS bank conflicts

⁃ Use ShuffleXor instead of Shuffle when possible

21

Recap

▪ Explicit APIs expose more of the nitty-gritty details

⁃ Barriers and what caches get flushed

⁃ Blocks which can’t read/write compressed data (DCC and present ☺)

▪ GCN was compute/throughput focused, RDNA is graphics/latency focused

▪ Fix many bottlenecks found over the years

⁃ Geometry handling

⁃ Reduce cache flushes

⁃ Less “sensitive” compared to GCN (less work in flight needed, lower latency, etc.)

▪ Enable a more scalable architecture

⁃ Pave the way for a whole family of new GPUs

⁃ New features, different configurations, etc. coming down the line

22

G
ra

p
h

ic
s

C
o

re

Sh
ad

er
 E

n
gi

n
e

Memory Hierarchy
G

ra
p

h
ic

s
C

o
re

Sh
ad

er
 E

n
gi

n
e

Sh
ad

er
 E

n
gi

n
e

Sh
ad

er
 A

rr
ay

L2$

Sh
ad

er
 A

rr
ay

Scalable Data Fabric

23

L2$

Sh
ad

er
 A

rr
ay

L1$

R
D

N
A

 (
R

X
 5

7
0

0
 X

T)
G

C
N

 (
R

X
 V

eg
a

6
4

)

CU CU CU CU

I$ and K$

L1$ L1$ L1$ L1$

CU CU CU CU

I$ and K$

L1$ L1$ L1$ L1$

CU CU CU CU

I$ and K$

L1$ L1$ L1$ L1$

CU CU CU CU

I$ and K$

L1$ L1$ L1$ L1$

WGP

L0$ L0I and K$

Sh
ad

er
 E

n
gi

n
e

Sh
ad

er
 A

rr
ay

Sh
ad

er
 E

n
gi

n
e

Sh
ad

er
 A

rr
ay

Sh
ad

er
 A

rr
ay

Sh
ad

er
 E

n
gi

n
e

Sh
ad

er
 A

rr
ay

Sh
ad

er
 A

rr
ayWGP

L0$ L0I and K$

WGP

L0$ L0I and K$

WGP

L0$ L0I and K$

WGP

L0$ L0I and K$

HBM2

Scalable Data Fabric

GDDR6

Memory Hierarchy - L2 Clients

▪ On the Polaris architecture only the CUs are clients of L2.
Copy Engine, CP and Render Backend directly write to memory.
→ Lots of L2 flushes.

L2$

CU

Memory Controller

RBCPCopy

24

Memory Hierarchy - L2 Clients

▪ On the Polaris architecture only the CUs are clients of L2.
Copy Engine, CP and Render Backend directly write to memory.
→ Lots of L2 flushes.

▪ With the “Vega” architecture CP and the Render Backend became clients of L2.
→ Reduced number of L2 flushes. Uploads via copy queue still require an L2 flush.

L2$

CU

Scalable Data Fabric

CP

Copy

RB

25

Memory Hierarchy - L2 Clients

▪ On the Polaris architecture only the CUs are clients of L2.
Copy Engine, CP and Render Backend directly write to memory.
→ Lots of L2 flushes.

▪ With the “Vega” architecture CP and the Render Backend became clients of L2.
→ Reduced number of L2 flushes. Uploads via copy queue still require a flush.

▪ On RDNA the Copy Engine is now a client of L2, too.
→ You should rarely observe a L2 flush on “Navi”.

L2$

WGP

Scalable Data Fabric

CP L1$Copy

RB

26

Caches – Some numbers

RX 5700 XT Size Cache Line Size Read/Write

Instruction Cache (I$) 32KB per WGP (~2CUs) 64B Read-only

Scalar Cache (K$) 16KB per WGP (~2CUs) 64B Read-only

RX Vega 64 Size Cache Line Size Read/Write

Instruction Cache (I$) 32KB per 4 CUs 32B Read-only

Scalar Cache (K$) 16KB per 4 CUs 32B Read-only

→ Twice as much I$ and K$, balancing out requirement for twice as many scalar resources

27

Caches – Some numbers

RX 5700 XT Size Cache Line Size Read/Write

Instruction Cache (I$) 32KB per WGP (~2CUs) 64B Read-only

Scalar Cache (K$) 16KB per WGP (~2CUs) 64B Read-only

L0 Cache 2x 16KB per WGP (~2CUs) 128B Read-only

RX Vega 64 Size Cache Line Size Read/Write

Instruction Cache (I$) 32KB per 4 CUs 32B Read-only

Scalar Cache (K$) 16KB per 4 CUs 32B Read-only

L1 Cache 16KB per CU 64B Read-only

→ Twice as much I$ and K$, balancing out requirement for twice as many scalar resources
→ Higher bandwidth due to 128B cache lines. Fills up the chip with fewer memory requests.

28

Caches – Some numbers

RX 5700 XT Size Cache Line Size Read/Write

Instruction Cache (I$) 32KB per WGP (~2CUs) 64B Read-only

Scalar Cache (K$) 16KB per WGP (~2CUs) 64B Read-only

L0 Cache 2x 16KB per WGP (~2CUs) 128B Read-only

L1 Cache 128KB per shader array 128B Read-only

L2 Cache 4MB 128B Read/Write

RX Vega 64 Size Cache Line Size Read/Write

Instruction Cache (I$) 32KB per 4 CUs 32B Read-only

Scalar Cache (K$) 16KB per 4 CUs 32B Read-only

L1 Cache 16KB per CU 64B Read-only

L2 Cache 4MB 64B Read/Write

→ Twice as much I$ and K$, balancing out requirement for twice as many scalar resources
→ Higher bandwidth due to 128B cache lines. Fills up the chip with fewer memory requests.
→ Lower latency over “Vega” due to 512KB additional caches (L1).

29

DCC Everywhere

→ Expect more textures to stay compressed.
→ Compute all the things!

“Vega” Compressed

Reads

Compressed

Writes

CU

Render Backend

Present Queue

→ Decompression barrier before writing to UAV.

“Navi” Compressed

Reads

Compressed

Writes

WGP

Render Backend

Present Queue

→ Decompression barrier before Present.

30

N/A

N/A

DCC Everywhere

▪ On “Vega”:

Video Memory

L2$

CU

Render Backend

Decompression

Compressor Module

Compressed
Decompressed

▪ On “Navi”:

Video Memory

L2$

WGP

Render Backend

L1$

Compressor Module

Compressor Module

31

→ Bandwidth to VMEM stays unaffected.

DCC Everywhere – Compressed Writes

▪ Scattered Write

→ Prefer coalesced stores of at least 256B per wave for full efficiency.
→ Good rule of thumb: Write 8x8 blocks to images with 8x8 workgroup size.

Compressor Module

▪ 256B Coalesced Write
(4bpp in Wave64, 8bpp on Wave32)

L2$

Compressor Module

L2$ CLCL

CLCL
CL

CL CL

Fetch &
Decompress

Compress &
Overwrite

Combine

Compress &
Overwrite

LDS

SIMD32SALU SIMD32SALU

SIMD32SALU SIMD32SALU

SIMD32SALU SIMD32SALU

SIMD32

Back to the WGP – Texture Units

L0$

Texture
Addresser

Texture Data
I$
K$

LDS

SALU

L0$

Texture
Addresser

Texture Data

L0$

Texture
Addresser

Texture Data

L0$

Texture
Addresser

Texture Data

I$
K$

SIMD32SALU

33

Texture Unit - Changes to TA/TD

Feature GCN RDNA

Load addressing 4 to 16 (coalesced) addresses/clk 32 addresses/clk

Load data processing 4 to 16 (coalesced) dwords/clk 32 dwords/clk

→ Easier to reach maximum bandwidth via loads.

34

Texture Unit - Changes to TA/TD

Feature GCN RDNA

Load addressing 4 to 16 (coalesced) addresses/clk 32 addresses/clk

Load data processing 4 to 16 (coalesced) dwords/clk 32 dwords/clk

Store addressing 4 to 16 (coalesced) addresses/clk 32 addresses/2 clk

Store data processing 4 to 16 (coalesced) dwords/clk 32 dwords/2 clk

→ Easier to reach maximum bandwidth via loads.
→ Easier to reach maximum bandwidth via stores.

35

Texture Unit - Changes to TA/TD

Feature GCN RDNA

Load addressing 4 to 16 (coalesced) addresses/clk 32 addresses/clk

Load data processing 4 to 16 (coalesced) dwords/clk 32 dwords/clk

Store addressing 4 to 16 (coalesced) addresses/clk 32 addresses/2 clk

Store data processing 4 to 16 (coalesced) dwords/clk 32 dwords/2 clk

Filtering 64bit texels 2 components/clk 4 components/clk

→ Easier to reach maximum bandwidth via loads.
→ Easier to reach maximum bandwidth via stores.
→ Improve FP16 with full rate 4 channel sampling.

36

Load / Store Queue – “Vega”

...
buffer_store_dword v2, v0, s[12:15], 0 idxen
buffer_load_dword v0, v1, s[8:11], 0 idxen
s_waitcnt vmcnt(0)
v_add_f32 v0, v2, v0

0

VMCNT

37

Load / Store Queue – “Vega”

...
buffer_store_dword v2, v0, s[12:15], 0 idxen
buffer_load_dword v0, v1, s[8:11], 0 idxen
s_waitcnt vmcnt(0)
v_add_f32 v0, v2, v0

1

VMCNT

Vector stores and loads increment VMCNT.

38

Load / Store Queue – “Vega”

...
buffer_store_dword v2, v0, s[12:15], 0 idxen
buffer_load_dword v0, v1, s[8:11], 0 idxen
s_waitcnt vmcnt(0)
v_add_f32 v0, v2, v0

2

VMCNT

39

Load / Store Queue – “Vega”

...
buffer_store_dword v2, v0, s[12:15], 0 idxen
buffer_load_dword v0, v1, s[8:11], 0 idxen
s_waitcnt vmcnt(0)
v_add_f32 v0, v2, v0

2

VMCNT

Wait here until VMCNT is 0.

40

Load / Store Queue – “Vega”

...
buffer_store_dword v2, v0, s[12:15], 0 idxen
buffer_load_dword v0, v1, s[8:11], 0 idxen
s_waitcnt vmcnt(0)
v_add_f32 v0, v2, v0

0

VMCNT

That means we also wait for the store!

41

Load / Store Queue – “Vega”

...
buffer_store_dword v2, v0, s[12:15], 0 idxen
buffer_load_dword v0, v1, s[8:11], 0 idxen
s_waitcnt vmcnt(0)
v_add_f32 v0, v2, v0

0

VMCNT

42

Load / Store Queues - RDNA

...
buffer_store_dword v2, v0, s[12:15], 0 idxen
buffer_load_dword v0, v1, s[8:11], 0 idxen
s_waitcnt vmcnt(0)
v_add_f32 v0, v2, v0
s_waitcnt vscnt(0)
s_barrier

0

VSCNT

0

VMCNT

“Navi” adds a separate queue for stores.

43

Load / Store Queues - RDNA

...
buffer_store_dword v2, v0, s[12:15], 0 idxen
buffer_load_dword v0, v1, s[8:11], 0 idxen
s_waitcnt vmcnt(0)
v_add_f32 v0, v2, v0
s_waitcnt vscnt(0)
s_barrier

1

VSCNT

0

VMCNT

Stores increment VSCNT.

44

Load / Store Queues - RDNA

...
buffer_store_dword v2, v0, s[12:15], 0 idxen
buffer_load_dword v0, v1, s[8:11], 0 idxen
s_waitcnt vmcnt(0)
v_add_f32 v0, v2, v0
s_waitcnt vscnt(0)
s_barrier

1

VSCNT

1

VMCNT

Loads still increment VMCNT.

45

Load / Store Queues - RDNA

...
buffer_store_dword v2, v0, s[12:15], 0 idxen
buffer_load_dword v0, v1, s[8:11], 0 idxen
s_waitcnt vmcnt(0)
v_add_f32 v0, v2, v0
s_waitcnt vscnt(0)
s_barrier

1

VSCNT

0

VMCNT

Wait until all loads return
and VMCNT drops to 0.

46

Load / Store Queues - RDNA

...
buffer_store_dword v2, v0, s[12:15], 0 idxen
buffer_load_dword v0, v1, s[8:11], 0 idxen
s_waitcnt vmcnt(0)
v_add_f32 v0, v2, v0
s_waitcnt vscnt(0)
s_barrier

1

VSCNT

0

VMCNT

Now we don’t wait for the store to finish!

47

Load / Store Queues - RDNA

...
buffer_store_dword v2, v0, s[12:15], 0 idxen
buffer_load_dword v0, v1, s[8:11], 0 idxen
s_waitcnt vmcnt(0)
v_add_f32 v0, v2, v0
s_waitcnt vscnt(0)
s_barrier

1

VSCNT

0

VMCNT

Waiting for the store happens here.

48

Load / Store Queues - RDNA

...
buffer_store_dword v2, v0, s[12:15], 0 idxen
buffer_load_dword v0, v1, s[8:11], 0 idxen
s_waitcnt vmcnt(0)
v_add_f32 v0, v2, v0
s_waitcnt vscnt(0)
s_barrier

0

VSCNT

0

VMCNT

We are good to go once the store operation
returns.

49

Load / Store Queues - RDNA

...
buffer_store_dword v2, v0, s[12:15], 0 idxen
buffer_load_dword v0, v1, s[8:11], 0 idxen
s_waitcnt vmcnt(0)
v_add_f32 v0, v2, v0
s_waitcnt vscnt(0)
s_barrier

0

VSCNT

0

VMCNT

▪ Optimization for the general case.

⁃ It’s very likely that you will see s_waitcnt vscnt(0) only in front of a s_barrier
or in front of atomic operations.

⁃ s_endpgm implicitly waits on all counters.

▪ Non atomic stores are now true “fire and forget”.

50

Load / Store Queues - RDNA

Effectively sequences like this will now run faster by default.

→You might want to consider
interleaving loads and stores again.

→This has the additional benefit of saving VGPRs.

buffer_load_dword v1, v0, s[4:7], 0 idxen
v_add_u32 v2, 1, v0
s_waitcnt vmcnt(0)
buffer_store_dword v1, v0, s[8:11], 0 idxen
buffer_load_dword v1, v2, s[4:7], 0 idxen
v_add_u32 v3, 2, v0
s_waitcnt vmcnt(0)
buffer_store_dword v1, v2, s[8:11], 0 idxen
buffer_load_dword v1, v3, s[4:7], 0 idxen
v_add_u32 v2, 3, v0
s_waitcnt vmcnt(0)
buffer_store_dword v1, v3, s[8:11], 0 idxen
buffer_load_dword v1, v2, s[4:7], 0 idxen
v_add_u32 v3, 4, v0
s_waitcnt vmcnt(0)
buffer_store_dword v1, v2, s[8:11], 0 idxen
buffer_load_dword v1, v3, s[4:7], 0 idxen
v_add_u32 v2, 5, v0
s_waitcnt vmcnt(0)
buffer_store_dword v1, v3, s[8:11], 0 idxen
buffer_load_dword v1, v2, s[4:7], 0 idxen
v_add_u32 v3, 6, v0
s_waitcnt vmcnt(0)
buffer_store_dword v1, v2, s[8:11], 0 idxen
buffer_load_dword v1, v3, s[4:7], 0 idxen
v_add_u32 v2, 7, v0
s_waitcnt vmcnt(0)
buffer_store_dword v1, v3, s[8:11], 0 idxen
buffer_load_dword v1, v2, s[4:7], 0 idxen

51

RDNA Fast Loads

▪ Texture Unit has low latency path for Loads.

▪ In general we need to keep the order with respect to Samples.

▪ Worst-case: Loads are as slow as Samples.

L0$

Texture Addresser

Texture Data

SIMD32
Low Latency Request Path

Low Latency Return Path

L L L L L L L L L L S L LS S S SS S S

→Replace all texture.Sample(PointSampler, texcoord) with texture.Load(location)!

→Separate Loads and Samples if feasible.
52

Memory Hierarchy – Take Away

▪ 128B cache lines
→ You may want to adjust your memory alignments

▪ Addition of L1 gives access to more cache
→ Easier to run at peak ALU

▪ Independent loads and stores
→ Faster by default and opportunity for VGPR savings

▪ Higher bandwidth via PCIe® 4, load in parallel via PCIe®
and copy queue (SDMA) on L2
→ Stream all the things on the copy queue

▪ DCC everywhere
→ Fully overwrite 256B blocks on store.
→ Another reason to move to compute ☺

53

RDNA

▪ RDNA - An all new architecture

▪ Focus on graphics & latency

⁃ Reduced latency throughout the whole pipeline

⁃ Higher efficiency on many graphics workloads

▪ A new infrastructure

⁃ New memory, interconnect, etc.

⁃ New display controllers

▪ Available July 7th!

54

DISCLAIMER AND ATTRIBUTIONS

DISCLAIMER

The information contained herein is for informational purposes only, and is subject to change without notice. While every precaution has been taken in the preparation of this
document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced
Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind,
including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other
products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to the
purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale. GD-18

“Vega” and “Navi” are codenames for AMD architectures, and are not product names. GD-122.

©2019 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, Radeon, Ryzen and combinations thereof are trademarks of Advanced Micro Devices, Inc.
Vulkan and the Vulkan logo are registered trademarks of the Khronos Group Inc. PCIe and PCI Express are registered trademarks of the PCI-SIG Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

55

