


Now this is how the talk will look like:

- I present you with a problem that
has been seen in a loooooot of
AAA titles. Both shipped and
upcoming ones.
I’m not going to say which titles
these are, don’t want to offend
anyone and sometimes you have
to call a solution “good enough”.
People want to ship games at the
end of the day.

- I’ll show you how to use RGP to



identify the problem

- I’ll explain the underlying issue

- I’ll tell you how to fix it

- For the following three topics:
Barriers, Async, Compression

All of the information given in this talk is 
about Vega.



You can access this via Events-
>Wavefront occupancy.

This is probably the view you will 
spent your first few minutes on to 
figure out what’s going on in your 
frame.



You can access this via Events-
>Wavefront occupancy.

This is probably the view you will 
spent your first few minutes on to 
figure out what’s going on in your 
frame.



You can access this via Events-
>Wavefront occupancy.

This is probably the view you will 
spent your first few minutes on to 
figure out what’s going on in your 
frame.







May I introduce: a wavefront.

Your dispatch/draw is split up into 
multiple wavefronts. Each executing 
your shader program with multiple 
threads in lockstep.

Once a wavefront finishes executing 
the shader program its HW resources 
(registers etc) are freed and new 
wavefronts can spawn.



RGP puts them into buckets of a 
certain duration and counts the total 
number of wavefronts that run on the 
GPU during the time slice of each 
single bucket.

Since there are different wavefront
counts on each GPU family, the filling 
is normalized to the maximum 
amount of wavefronts.

If our hypothetical GPU could run 10 
wavefronts at once, RGP would state 



40% occupancy here.

(real numbers are in the thousands)

And for completeness sake, this is how 
RGP would generate the trace for our 
hypothetical GPU.



Remember: Higher occupancy is 
simply more waves in flight.

Important: It’s occupancy, not 
utilization! The ALUs may already be 
stressed to the max. 

Imagine on a CPU: Dispatching a lot 
more virtual threads than HW 
threads doesn’t help you much.

→ Fewer waves is not necessarily 

bad! Not saturating the 
ALUs/Bandwidth is.



Obviously, if there are NO waves 
running, then we’re not using the 
shader core to full extent (i.e. we 
don’t get at least one wave onto each 
SIMD). 
Also, usually not all waves are done 
at the same time. See the occupancy 
dropping at the end of the workloads. 



But what is causing that? RGP knows 
the answer: Barriers!



Back to our “zoomed” in view.

Without any synchronization the next 
compute shader could start here.



Barriers cause the next bunch of 
work items to wait until the prior 
work all finished.

They also sometimes cause other 
work to happen (think of 
compression/decompression & 
making work visible to other units 
=> flush caches). 
Thus, they sometimes have some 
additional overhead aside from 
draining the shader core.



Now the important part, it’s not only that 
tiny bit of work being lost (1)

It’s actually that much (2)



So we’re up for issue number 1: 
Using a barrier after each draw. 

Or even worse: multiple barriers 
after (almost) each draw.



Let’s concentrate on how we can 
solve issues like this.

Obviously we can’t just get rid of all 
barriers. Some synchronization will 
always be necessary.



First, we can batch them, so the 
driver can manage the 
synchronization points more 
precisely.

It’s as easy as submitting them 
together in a single 
vkCmdPipelineBarrier / 
CommandList::ResourceBarrier.

The driver can then easily figure out 
the worst case synchronization or if 
only a single cache flush is necessary 
(instead of multiples) etc.



Only a small impact, but the effects 
add up! Don’t neglect those.

Also, certain compressions may start 
earlier, that’s a net win!



This is how you will see it in RGP.

Note that the first barrier is still 
exactly as long as before, but we 
were able to get rid of all the other 
barriers!

We successfully overlapped the 
FastClearEliminates (writing cleared 
values from meta data to every pixel 
-> decompressing the texture) as 
well.



Be very descriptive in how you define 
the stage flags. In some cases you 
pay for being too general.

Vulkan specific. Found by a developer 
we work with.

If you click on any of these barriers 
and look to the right side into the 
details again you see each barrier 
taking 0.044ms to execute.

Doing a FULL synchronization each.



Pretend we would go through the 
GPU pipeline in a straight line. 
Compute only here. 

We put stuff like textures and buffers 
in on top, pass a lot of stages until 
we execute the compute shader
until our results drop out at the 
bottom.



Now let’s say in some special corner 
cases BOTTOM_OF_PIPE takes a long 
time to execute.
But we’re only interested in 
dependencies between the CS!



If we would describe the accesses 
more precisely, we could overlap 
more.



Here it was set with ALL_COMMANDS 
(contains BOTTOM_OF_PIPE) on the 
async compute queue.

Replacing that with COMPUTE shows 
a big improvement, here enough to 
overlap with other draws on the 
graphics queue.



To prove it, here’s the detailed view 
when clicking on these barriers.

We replaced a full synchronization 
with the proper CS sync, which is a 
lot less expensive on the async 
queue.

Almost a magnitude improvement on 
each barrier.



Work that is independent does not 
necessarily have to wait.

→ Move the barrier after independent 
workloads.

Added benefit: barriers often flush 
cashes as well. 
If PS and CS share reads here, then 
the CS may run slower as it doesn’t 
hit in L2 anymore.



Order of submissions here:

1. VS/PS

2. Barrier

3. CS



Order of submission would be:

1. PS

2. CS

3. Barriers



Usually what you want to do is to 
overlap long running CS waves with 
raster heavy workloads. In RGP these 
usually show up as short VS waves 
with low occupancy.

This is what we start out with. Notice 
the barrier that causes a gap 
between the Vertex and the Compute 
work.

Let’s start with moving that barrier 
behind the CS.



Pro tip these barriers may be due to 
start/end of RenderPasses: Add explicit 
TOP to BOTTOM barriers (basically no-op 
barriers) as subpass dependencies to 
EXTERNAL 
to get rid of implicit barriers at the 
beginning/end of render passes in 
Vulkan.



Some tiny overlap at least. 

But we can do better: The CS 
wavefronts are running longer than 
the VS wavefronts → We should swap 

CS and VS submits.



This already looks better than before. 
Still not ideal as at some point we 
only spawn new CS waves, no VS 
waves anymore.

→ We can split up the CS work into 

multiple dispatches and interleave it 
with VS work.

E.g. if the CS is fullscreen, split it into 
tiles and interleave it with draws.

Imagine shadow cascades with 
SSAO.



This gives amazing results! And 
completely without going to the 
async compute queue.

Works particularly well if you find 
passes that have significantly 
different hardware utilization.

E.g. texture fetch heavy SSAO with 
vertex heavy shadow map rendering.



Async queue does not force waits on 
the graphics queue! 
Useful for whole compute passes that 
require syncs to move to the async 
queue.

Keep attention to queues fighting for 
resources.
Move passes with a lot of work to the 
async queue, and keep the number 
of cross queue syncs to a minimum.



That probably didn’t turn out as 
expected.



But if done correctly, this can work 
out great!

See how the compute queue can take 
over while the graphics queue is 
draining and filling.



Varying workloads make this a hard 
problem. Sometimes you end up 
starving the graphics queue.

Rather aim to keep the graphics 
queue busy first.





Gaps, but no barriers. Where do they 
come from?

Let’s head over to a different view.



When you open up your capture you 
are greeted with the frame summary 
page. 
Anyone working with GPUView might 
see similarities.



Top is the graphics queue.



Bottom is the async compute queue 
(and/or copy queue if available)



New work item submissions 
(command buffers, waits, signals, 
presents) are added on top.

Each time one finishes, the others 
drop one level.

The lowest level are the work items 
the GPU queue worked on at that 
time.



RGP marks the frame it captured in 
light blue, but also shows you the 
frames prior and after.

The present packets are used to 
identify the frames.

This page will thus also show you on 
which queue the present ends up on.



Let’s now concentrate on the sync 
primitives (different trace).

Clicking on one of them shows 
related signal/waits.

On the bottom right you see how 
long it took to submit the packet, 
how long it’s been queued up and 
how long it took the GPU to execute 
it. 
Or in a case of the wait how long it 
prevented the GPU from progressing 



further.



Marking a selection shows the 
timespan in the bottom right corner 
of the view.

You may have noticed these small 
gaps as well.

The GPU interrupts the CPU kernel to 
signal that a command buffer 
finished.

CPU side bookkeeping can sometimes 
cause delays.



Not much you can do about –> only 
sync seldomly. Only 1-2 times per 
frame ideally.

Let it run uninterrupted as long as 
possible to overlap pipeline drains 
and fills.

And can even overlap with the next 
frame if your game can take the 
added latency.

That works because frames usually 
start with raster heavy workloads 
(GBuffer, Shadow maps) and end 



with compute heavy post processing.







This view is not split into queues, but 
rather accesses to resources.

Color render targets on top, depth 
targets below and barriers & buffers 
on the bottom.



This view is not split into queues, but 
rather accesses to resources.

Color render targets on top, depth 
targets below and barriers & buffers 
on the bottom.

The part you see here is the Gbuffer
pass (4 color targets + 1 depth 
target).

Side note: May want to take care of 
these barriers splitting up the Gbuffer
pass.



This view is not split into queues, but 
rather accesses to resources.

Color render targets on top, depth 
targets below and barriers & buffers 
on the bottom.

The part you see here is the Gbuffer
pass (4 color targets + 1 depth 
target).

Side note: May want to take care of 
these barriers splitting up the Gbuffer
pass.



Below it you can see details that 
unroll once you click on a RT.





Let’s make this a quick (barely 
scratching the surface) introduction 
to texture compression as it’s used 
for render targets.

Let’s start out with a texture and cut 
it into blocks.

We attach some meta data to the 
texture that describes attributes per 
block.

Like 



- Cleared

- Clear Color

- Compressed / Decompressed

In compressed state we can overwrite 
the contents of each original block.

Everything’s lossless compressed so we 
can restore the correct color per pixel.

Can be done during creation of that 
texture, meaning rendering into it.

Controlled by transitioning the texture, 
sometimes may need to decompress it.



The cool thing is:

- Can skip loading the actual pixels

- Or only load parts of a pixel block!

Make sure to transition correctly, or 
you may end up seeing the 
compressed blocks → corruptions.



Make sure to transition correctly, or 
you may end up seeing the 
compressed blocks → corruptions.



Cycle through sampling a texture and 
exporting color values to a render 
target.

→ We save on bandwidth both on 

read AND write to VMEM.

The texture itself isn’t going to be 
stored more compactly – in fact we 
even need to attach more data to 
hold meta information!



Cycle through sampling a texture and 
exporting color values to a render 
target.

→ We save on bandwidth both on 

read AND write to VMEM.

The texture itself isn’t going to be 
stored more compactly – in fact we 
even need to attach more data to 
hold meta information!



- Rendering many triangles into a 
target can turn a block to 
decompressed state. Clearing 
resets meta data and thus 
improves compression ratio.

- Shared ownership disables 
compression (certain blocks can’t 
handle compression)

- Quirks with UNKNOWN/MUTABLE 
prevent compression. Can work 
around it with 
VK_KHR_image_format_list



- Important if many draws render to 
that target.



Generous 10% win in this case.













Thanks! 

• To the AMD tools team

• To all reviewers

... and to you - Thank you for your attention! 

Time for questions : ) 

Find RGP on GPUOpen 
https://gpuopen.com/rgp/ 




