GOC

Surfing the wave(front)s with
Radeon™ GPU Profiler

Dominik Baumeister
Developer Technology Engineer
Advanced Micro Devices, Inc.

MARCH 18-22, 2019 | #GDC19

Overview

@ ¢ X @

¢ Wavefronts & Barriers

« Cross queue synchronization
« Compression
e Wrap-up

Now this is how the talk will look like:

I present you with a problem that
has been seen in a loooooot of
AAA titles. Both shipped and
upcoming ones.

I'm not going to say which titles
these are, don’t want to offend
anyone and sometimes you have
to call a solution “good enough”.
People want to ship games at the
end of the day.

I'll show you how to use RGP to

identify the problem
- TI'll explain the underlying issue
- T'll tell you how to fix it

- For the following three topics:
Barriers, Async, Compression

All of the information given in this talk is
about Vega.

wdl b1 Sy ||| L = m i
i |||II|I|I|II|IIIII II Ll LT[TR—— Wil B0 ol 118
I|||||||||I||I||IIIL IIII||II|| ML T 0 L0 T L i, o .. o IJII

GDC MARCH 18-22, 2019 | #GDC19

You can access this via Events-
>Wavefront occupancy.

This is probably the view you will
spent your first few minutes on to
figure out what'’s going on in your
frame.

Tovve o Torcvrnnnalig

g
FYIERNY
Timos T @ ||||||||||||||||| T

TN TN AT T -
]!ihi. |||!|. ”I!u ||| i.lll '!I!| -

You can access this via Events-
>Wavefront occupancy.

This is probably the view you will
spent your first few minutes on to
figure out what'’s going on in your
frame.

You can access this via Events-
>Wavefront occupancy.

This is probably the view you will
spent your first few minutes on to
figure out what'’s going on in your
frame.

Vertex Shader Wavefronts

Pixel Shader Wavefronts

GDC MARCH 18-22, 2019 | #GDC19

Compute Shader Wavefronts

GDC MARCH 18-22, 2019 | #GDC19

& Wavefront

Time

May I introduce: a wavefront.

Your dispatch/draw is split up into
multiple wavefronts. Each executing
your shader program with multiple
threads in lockstep.

Once a wavefront finishes executing
the shader program its HW resources
(registers etc) are freed and new
wavefronts can spawn.

T 100%

AduednooQ

== 0%

Time

RGP puts them into buckets of a
certain duration and counts the total
number of wavefronts that run on the
GPU during the time slice of each
single bucket.

Since there are different wavefront
counts on each GPU family, the filling
IS normalized to the maximum
amount of wavefronts.

If our hypothetical GPU could run 10
wavefronts at once, RGP would state

40% occupancy here.
(real numbers are in the thousands)

And for completeness sake, this is how
RGP would generate the trace for our
hypothetical GPU.

Higher Occupancy != Higher Utilization

L i} | oo

3
AouednooQ

5%
AN, | | o

Remember: Higher occupancy is
simply more waves in flight.

Important: It's occupancy, not
utilization! The ALUs may already be
stressed to the max.

Imagine on a CPU: Dispatching a lot
more virtual threads than HW
threads doesn’t help you much.

- Fewer waves is not necessarily
bad! Not saturating the
ALUs/Bandwidth is.

Obviously, if there are NO waves

running, then we’re not using the

shader core to full extent (i.e. we

t get at least one wave onto each

14

don

SIMD).

Also, usually not all waves are done

at the same time. See the occupancy
dropping at the end of the workloads.

Barriers

But what is causing that? RGP knows

the answer: Barriers!

Back to our “zoomed” in view.

Without any synchronization the next
compute shader could start here.

Barrier

Barriers cause the next bunch of
work items to wait until the prior
work all finished.

They also sometimes cause other
work to happen (think of
compression/decompression &
making work visible to other units
=> flush caches).

Thus, they sometimes have some
additional overhead aside from
draining the shader core.

Now the important part, it's not only that
tiny bit of work being lost (1)

It's actually that much (2)

So we're up for issue number 1:
Using a barrier after each draw.

Or even worse: multiple barriers
after (almost) each draw.

®

§OHH R T H E R O
R T t F oo

HH- s 4 e
b
+1627 ' 4 ¥

s i ¥ } H ¥ ¥
e ' o o — e —

GDC MARCH 18-22, 2019 | #GDC19

Let’s concentrate on how we can
solve issues like this.

Obviously we can’t just get rid of all
barriers. Some synchronization will
always be necessary.

, cmdList.ResourceBarrier(1, ...

1. Batch barriers cmdList.ResourceBarrier(1, ...
cmdList.ResourceBarrier(1, ...

cmdList.ResourceBarrier(1, ...

S N N N

—_——p —p

Time

GDC MARCH 18-22, 2019 | #GDC19

First, we can batch them, so the
driver can manage the
synchronization points more
precisely.

It's as easy as submitting them
together in a single
vkCmdPipelineBarrier /
CommandList::ResourceBarrier.

The driver can then easily figure out
the worst case synchronization or if
only a single cache flush is necessary
(instead of multiples) etc.

, cmdList.ResourceBarrier(4, ...)
1. Batch barriers

GDC MARCH 18-22, 2019 | #GDC19

Only a small impact, but the effects
add up! Don’t neglect those.

Also, certain compressions may start
earlier, that’s a net win!

1. Batch barriers @ . ©

. o Quecs nd Zoom to selection | Reset zoom 0@ 2791 vkCr 31 ipteInP’:BalrIP.r()
- P Launchet from Queue ndex

nnlnmnglugubil] g Sacome szem) » .

Sare nh il s e e

JI“"'IIIII'I"'"III pre III|||||||||||||I ‘ e

i :
Frontend
.||||||||I|||||||||||||l e |||||||||||||||||l|, R
aches
Mi:u None akdated Gm
Fushed W e
Bai pe xa Barrier type (AP
Duration fiter 4 - Layout transitions [|
S| . T 3 o)
87 708 ms w
=, e E 1
- ey e
= s
: ™ g
- . 2795 CmdFastClearElimanate(
00
GDC MARCH 18-22, 2019 | #GDC19

This is how you will see it in RGP.

Note that the first barrier is still
exactly as long as before, but we

were able to get rid of all the other
barriers!

We successfully overlapped the
FastClearEliminates (writing cleared
values from meta data to every pixel
-> decompressing the texture) as
well.

Start time 11.325 ms
End time

2. Specify the correct stage flags Duration

Hardware context

Frontend
Synchronization

Caches
Invalidated [K |
Flushed None

Barrier type [APP

Layout transitions
None

GDC MARCH 18-22, 2019 | #GDC19

Be very descriptive in how you define
the stage flags. In some cases you
pay for being too general.

Vulkan specific. Found by a developer
we work with.

If you click on any of these barriers
and look to the right side into the
details again you see each barrier
taking 0.044ms to execute.

Doing a FULL synchronization each.

Time

Pretend we would go through the
GPU pipeline in a straight line.
Compute only here.

We put stuff like textures and buffers
in on top, pass a lot of stages until
we execute the compute shader

until our results drop out at the
bottom.

Time

Now let’s say in some special corner
cases BOTTOM_OF_PIPE takes a long
time to execute.

But we’re only interested in
dependencies between the CS!

Time

GDC MARCH 18-22, 2019 | #GDC19

If we would describe the accesses
more precisely, we could overlap
more.

2. Specify the correct stage flags

ALL_COMMANDS

B0 B Be4 B

[

ee el
P TR Y P —
um o7 Wy | | e | w6 s [Es
2 290 | Hee |22 |2 |35 |%0|) | 20 |89

B2 u2 05 | M | 97 | 2962 263 6o 24| 271 |3
nn | B8 B | e |50 | 38|80 | e | 72 (89
294 oM e | 26s | 254 | 2585 |23 | Mes| | | 22 |28]
23 275 | 28 | 26 |25 | s M e | B34 2
2% a% s | Mes | B 595 |E5 oes| B2 —»
2y | om | Ny | BB | B | 07| % w3 |89 2
5% mE | mB | M [E | ¥ %o s (st 2

| = mR) | Mm | M2 | B | B2 |®n s | B : COMPUTE

| %0 20| 3% | M | Mo | ¥D |®n we | #s6]
241 23| MR | e | 3| B | @7 7 |msy | 2
Ed o8 | MR | s | 2 | 35| X on | B8 |2
24 ze | #m s | s | Wi | % s |88]
24 s | M | W | e |30 N B | 2s |20 |2

| 28 W6 | M | Bo | B |EB 0 | 8
2% 27 | MWe | Bor | W M | | 281|262 ?
247 | 281 pesges| 208 | wp (2 | [z pass)
ETY 2 (Mo | m02 | 20 [-yt
2% 293 | - 2503 ‘ un *27 im | 380

24
GDC MARCH 18-22, 2019 | #GDC19

Here it was set with ALL_COMMANDS
(contains BOTTOM_OF_PIPE) on the
async compute queue.

Replacing that with COMPUTE shows
a big improvement, here enough to
overlap with other draws on the
graphics queue.

Start time 11.325ms Start time 10.257 ms
om

5 End time - End time 26105
2. Specify the correct stage flags ouaten owatin

re context Hardware context

Frontend Frontend

Synchronization Synchronization I:I

lCafdhe«_:‘1 Bm Caches

F’l‘:ah :‘e : Invalidated (K JL1]
shel None Flushed None

Barrier type wd Barrier type (APP

Layout transitions -
Layout transitions
None
None

GDC MARCH 18-22, 2019 | #GDC19

To prove it, here’s the detailed view
when clicking on these barriers.

We replaced a full synchronization
with the proper CS sync, which is a
lot less expensive on the async
queue.

Almost a magnitude improvement on
each barrier.

Draw()
3. Move barriers - Overlap independent work Barrier()
Dispatch()

o Time

e Barrier might flush caches

GDC MARCH 18-22, 2019 | #GDC19

Work that is independent does not
necessarily have to wait.

- Move the barrier after independent
workloads.

Added benefit: barriers often flush
cashes as well.

If PS and CS share reads here, then
the CS may run slower as it doesn’t
hit in L2 anymore.

Order of submissions here:
1. VS/PS

2. Barrier

3. CS

3. Move barriers = Overlap independent work

Draw()
Dispatch()
Barrier()

clo/o

Order of submission would be:
1. PS

2. CS
3. Barriers

MARCH 18-22, 2019 | #GDC19

3. Move barriers = Overlap independent work

9 Implicit vkRenderPass barriers

Usually what you want to do is to
overlap long running CS waves with
raster heavy workloads. In RGP these
usually show up as short VS waves
with low occupancy.

This is what we start out with. Notice
the barrier that causes a gap
between the Vertex and the Compute
work.

Let’s start with moving that barrier
behind the CS.

Pro tip these barriers may be due to
start/end of RenderPasses: Add explicit
TOP to BOTTOM barriers (basically no-op
barriers) as subpass dependencies to
EXTERNAL

to get rid of implicit barriers at the
beginning/end of render passes in
Vulkan.

3. Move barriers = Overlap independent work

i || -
i > 4.69ms

GDC MARCH 18-22, 2019 | #GDC19

Some tiny overlap at least.

But we can do better: The CS
wavefronts are running longer than
the VS wavefronts > We should swap
CS and VS submits.

3. Move barriers = Overlap independent work

m— i -

This already looks better than before.
Still not ideal as at some point we
only spawn new CS waves, no VS
waves anymore.

- We can split up the CS work into
multiple dispatches and interleave it
with VS work.

E.qg. if the CS is fullscreen, split it into
tiles and interleave it with draws.

Imagine shadow cascades with
SSAO.

3. Move barriers = Overlap independent work

w0 D, £ 3.10ms

®

9 Hardware resources

This gives amazing results! And
completely without going to the
async compute queue.

Works particularly well if you find
passes that have significantly
different hardware utilization.

E.g. texture fetch heavy SSAO with
vertex heavy shadow map rendering.

4. Asynchronous compute

Time
Q Overlap pipeline drains/fills

GDC MARCH 18-22, 2019 | #GDC19

Async queue does not force waits on
the graphics queue!

Useful for whole compute passes that
require syncs to move to the async
queue.

Keep attention to queues fighting for
resources.

Move passes with a lot of work to the
async queue, and keep the number
of cross queue syncs to a minimum.

4. Asynchronous compute

0.000 ms

L m WEML JL---n-IIIIIIIIImﬁiinImnmnullllh ﬂiMl]ﬁlnnlﬂn ,i ijﬁﬂ

(V)

That probably didn’t turn out as
expected.

4. Asynchronous compute

s 95,600,000 s 95,625.000 4% 95,650.000 4% 95,675.000 s 95,700,000 5 95,725.000 1% 750.000 s 95,775.000ps 95,800.000 ™ 9

suthwdd b 1l Ul o 1 \‘Il 100%

5 P

g |||Illllllllllli|. | ||||||||||||||I||||| |||||| jl || ol

25%

B N, |ih||||||||ﬂ||||||. i ...

» 5%

¥ 00
GDC MARCH 18-22, 2019 | #GDC19

But if done correctly, this can work
out great!

See how the compute queue can take
over while the graphics queue is
draining and filling.

000 ms 2.500 ms 5.000 ms. 7.500 ms 10.000 ms 12.500 15.000 ms 17.500 ms 20.000 ms 500 ms 25.000 ms
s oo b ool b oot o I T mm.uu\umum
Y | || N
AWl L 01 (il ol (Ml ...
i, o |||||||||||||I||||| l ||||| il
o . 5%
Lo .. AL, LN
3%
o
5

Varying workloads make this a hard
problem. Sometimes you end up
starving the graphics queue.

Rather aim to keep the graphics
queue busy first.

Wavefronts & Barriers \/
Cross queue synchronization
Compression

MARCH 18-22, 2019 | #GDC19

7813 ms

184 18.750 m:
nlin \||||| IIl"

-l Il

TITI

Gaps, but no barriers. Where do they
come from?

Let’s head over to a different view.

GDC MARCH 18-22, 2019 | #GDC19

When you open up your capture you
are greeted with the frame summary
page.

Anyone working with GPUView might
see similarities.

Sequeseal
il DG ony)
y

Top is the graphics queue.

MARCH 18-22, 2019 | #GDC19

GDC MARCH 18-22, 2019 | #GDC19

Bottom is the async compute queue
(and/or copy queue if available)

GDC MARCH 18-22, 2019 | #GDC19

New work item submissions
(command buffers, waits, signals,
presents) are added on top.

Each time one finishes, the others
drop one level.

The lowest level are the work items
the GPU queue worked on at that
time.

RGP marks the frame it captured in
light blue, but also shows you the
frames prior and after.

The present packets are used to
identify the frames.

This page will thus also show you on
which queue the present ends up on.

uuuuuuuuuuuu

[ox17eb2 [0x17eb 272040] VicsamaphareSonal

MARCH 18-22, 2019 | #GDC19

Let’'s now concentrate on the sync
primitives (different trace).

Clicking on one of them shows
related signal/waits.

On the bottom right you see how
long it took to submit the packet,
how long it's been queued up and
how long it took the GPU to execute
it.

Or in a case of the wait how long it
prevented the GPU from progressing

further.

>
Submit time: - | Submit duration: - | Enqueue duration: - | GPU duration: 0.150 ms | 56.406 ms
GDC MARCH 18-22, 2019 | #GDC19

Marking a selection shows the
timespan in the bottom right corner
of the view.

You may have noticed these small
gaps as well.

The GPU interrupts the CPU kernel to
signal that a command buffer
finished.

CPU side bookkeeping can sometimes
cause delays.

Async compute recommendations:

O Synchronize seldomly, ideally only 1-2 times per frame
O Move large continuous workloads to the async queue

Q For adventurers: overlap with next frame

May add latency!

GDC MARCH 18-22, 2019 | #GDC19

Not much you can do about —> only
sync seldomly. Only 1-2 times per
frame ideally.

Let it run uninterrupted as long as
possible to overlap pipeline drains
and fills.

And can even overlap with the next
frame if your game can take the
added latency.

That works because frames usually
start with raster heavy workloads
(GBuffer, Shadow maps) and end

with compute heavy post processing.

Wavefronts & Barriers \/
Cross queue synchronization \/
Compression

MARCH 18-22, 2019 | #GDC19

ovERVIEW

sarers -)

| i i i S T sl bbb o 1 i I
o Color
O coruaien
TN CawRTES Ccomaran o %0 comrr o o T o3
CoRTem Cor AT e Com T en oo &7 420 ComeT 09 Gl KT 428

epth

T

TP f-— — —-
Exzand trea Group by target v Siect columes p:
Tormat Meght Ormcals Comprewsin Sample count B
] W PORAT AAGAAS SR o " o '
= CRMAT AT I910810 LR PACS2 =0 38 o
W FORNAT RG0S LNCRN o 1o o 1
FORAT ASCABIAS LHCRN = « -
[VC_FORMAT D12 SAOKT_58 ST o » o '

MARCH 18-22, 2019 | #GDC19

Color RT #30

Color RT #29

GOC

MARCH 18-22, 2019 | #GDC19

This view is not split into queues, but
rather accesses to resources.

Color render targets on top, depth
targets below and barriers & buffers
on the bottom.

.....

This view is not split into queues, but
rather accesses to resources.

Color render targets on top, depth
targets below and barriers & buffers
on the bottom.

The part you see here is the Gbuffer
pass (4 color targets + 1 depth
target).

Side note: May want to take care of
these barriers splitting up the Gbuffer
pass.

This view is not split into queues, but
rather accesses to resources.

Color render targets on top, depth
targets below and barriers & buffers
on the bottom.

The part you see here is the Gbuffer
pass (4 color targets + 1 depth
target).

Side note: May want to take care of
these barriers splitting up the Gbuffer
pass.

e Tormat Wth Meght Ormcal Compression Semplecost Outolorderdrawcals Durstion

GDC MARCH 18-22, 2019 | #GDC19

Below it you can see details that
unroll once you click on a RT.

Name Format Width Height Draw calls Compression Sample count Out of order draw calls Duration
| Color RT 227 VK_FORMAT_RBGSBBAS_SRGB 1920 1080 77 OFF 1 0/2r7? 2.414ms
| Color RT #28 VK_FORMAT_A2R 10G 108 10_UNORM_PACK32 1920 1080 2766 OFF 1 0/2766 2.100 ms

Color RT #29 VK_FORMAT_RBGBB3AS_UNORM 1920 1080 2773 OFF 1 0/2773 2.170ms

Color RT 230 VK_FORMAT_RBGSB3AS_UNORM 1920 1080 2774 OFF 1 0/2774 2.416ms

MARCH 18-22, 2019 | #GDC19

— A « Cleared
\(\f:I \ \| - Clear color
AS= - Compressed

JA

/

/ \\ _,T/

Let’'s make this a quick (barely
scratching the surface) introduction
to texture compression as it’s used

for render targets.

Let’s start out with a texture and cut
it into blocks.

We attach some meta data to the
texture that describes attributes per
block.

Like

- Cleared
- Clear Color
- Compressed / Decompressed

In compressed state we can overwrite
the contents of each original block.

Everything’s lossless compressed so we
can restore the correct color per pixel.

Can be done during creation of that
texture, meaning rendering into it.

Controlled by transitioning the texture,
sometimes may need to decompress it.

— + Can only load meta data
\(° °I \ « Load only parts of a block
o

//\

/ \\ \,T/

The cool thing is:
- Can skip loading the actual pixels

- Or only load parts of a pixel block!

Make sure to transition correctly, or

you may end up seeing the
compressed blocks - corruptions.

+ Can only load meta data
\(° ° Z‘\ « Load only parts of a block
\‘l.‘:"

Requires correct transitions

MARCH 18-22, 2019 | #GDC19

GOC

Make sure to transition correctly, or

you may end up seeing the
compressed blocks - corruptions.

Sample()

Shader Core

Read
compressed

Compressed

https://apuopen.com/dcc-overview/

Cycle through sampling a texture and
exporting color values to a render
target.

- We save on bandwidth both on
read AND write to VMEM.

The texture itself isn’t going to be
stored more compactly - in fact we
even need to attach more data to
hold meta information!

Export()

Color Block Shader Core
Write Read
compressed compressed

Compressed

https://apuopen.com/dcc-overview/

Cycle through sampling a texture and
exporting color values to a render
target.

- We save on bandwidth both on
read AND write to VMEM.

The texture itself isn’t going to be
stored more compactly - in fact we
even need to attach more data to
hold meta information!

Compression checklist:

O Use exclusive queue ownership

O Explicitly state image format

Q Use only the required image usages

Q Clear render/depth targets

GOC

MARCH 18-22, 2019 | #GDC19

Rendering many triangles into a
target can turn a block to
decompressed state. Clearing
resets meta data and thus
iImproves compression ratio.

Shared ownership disables
compression (certain blocks can't
handle compression)

Quirks with UNKNOWN/MUTABLE
prevent compression. Can work
around it with
VK_KHR_image_format_list

- Important if many draws render to
that target.

Name Format Width Height Draw calls Compression Sample count Out of order draw calls Duration
| Color RT 227 VK_FORMAT_RBGSBBAS_SRGB 1920 1080 77 OFF 1 ojarm? 2.414ms
B CoorRT =28 VK_FORMAT_A2R 10G10810_UNORM_PACK32 1920 1080 2766 OFF 1 0/2766 2.100ms

Color RT #29 VK_FORMAT_RBGBB3AS_UNORM 1920 1080 2773 OFF 1 0/2773 2.170ms

Color RT 230 VK_FORMAT_RBGBBSAS_UNORM 1920 1080 2774 OFF 1 0/2774 2.416ms

Hame Format Width Height Draw calls Compression Sample count Out of order draw calls| Duration
] Color RT 227 VK_FORMAT _RB8GSEBAS_SRGB 1920 1080 2779 ON 1 /2779 2.207ms
O Color RT =28 VK_FORMAT _A2R 10G 10810_UNORM_PACK32 1920 1080 2768 ON 1 02768 1.959ms

Color RT 229 VK_FORMAT _RS8GSB8A8_UNORM 1920 1080 2775 ON 1 0/2775 2.014ms

Color RT #30 VK_FORMAT _RB8GSB8A8_UNORM 1920 1080 2776 ON 1 0/2776 2.218ms

@ 5-10%

MARCH 18-22, 2019 | #GDC19

Generous 10% win in this case.

Wavefronts & Barriers \/
Cross queue synchronization \/

Compression \/

MARCH 18-22, 2019 | #GDC19

Wrap-Up

.
Barriers e =
o T [V At
O Batch barri g L A
O Use the proper pipeline stage flags | ik A4 1. AL
Q Overlap independent work §

0 Use async compute queue

Mvs Mwseos Mcs Mes Wcs

GDC MARCH 18-22, 2019 | #GDC19

Wrap-Up

Cross queue synchronization

O Sync seldomly
Q Prefer large workloads : ==

MARCH 18-22, 2019 | #GDC19

Wrap-Up
Compression

O Use exclusive queue access

O Explicit image format

O Use only required image usage
Q Clear render / depth targets

GOC

W weght Drawest
e win P

s ™~ o

s o0

MARCH 18-22, 2019 | #GDC19

There is more

e More information on barriers
https://apuopen.com/vulkan-barriers-explained/

e More information on DCC
https://apuopen.com/dcc-overview/

o Check out RGPs new features on Wednesday 5pm!

« And a more detailed look at barriers by Matt Pettineo
at 4pm today ©

GDC MARCH 18-22, 2019 | #GDC19

Thanks!

« To the AMD tools team
« To all reviewers
... and to you - Thank you for your attention!

Time for questions :)

Find RGP on GPUOpen
https://gpuopen.com/rgp/

©

MARCH 18-22, 2019 | #GDC19

